Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313252818> ?p ?o ?g. }
- W4313252818 endingPage "3206" @default.
- W4313252818 startingPage "3192" @default.
- W4313252818 abstract "3D printing allows for the cost-effective fabrication of moulds and can cast complex shapes. In this study, alumina cement and fine aggregates for refractories were used as the main raw materials, and saturation was adjusted to an appropriate level to control the cement binder mixture for sand casting. For cast iron, the mould must withstand temperatures of up to 1400 °C and must exhibit sufficient strength, gas permeability, and thermochemical durability at high temperatures. To accomplish these requirements, 3D printing powder was prepared by adjusting the ratio of fine aggregate (D50: 30 μm) and an even finer cement component (D50: 4 μm). To improve the moulding quality, a green body was used to optimise the cement admixtures to increase the strength, and the saturation level of the 3D printer was adjusted for dimensional accuracy. The high-temperature durability of the mould was evaluated by measuring its strength after heat treatment, using Simultaneous Thermal Analysis (TG-DSC), and through dimensional stability assessment. In addition, the pores of the specimens were analysed through microscale X-ray tomography. The surface resolution and tolerance of the final casting were determined by a 3D image roughness test using a surface roughness scanner. The cement exhibited the shortest curing time and the highest strength when the mass ratio of CA (CaO·Al2O3) to C12A7 (12CaO·7Al2O3) was 8:2. The final mixing mass ratio of cement to the fine aggregate was 8:2, which was determined based on the relationship between flowability and powder bed surface quality. The results proved the high-temperature thermal stability of the 3D-printed mould, which showed a total mass reduction of less than 3% and a low coefficient of linear expansion up to 1300 °C. Consequently, the suitability of the 3D-printed moulded body, composed of casting sand with cement as a binder, for casting at temperatures >1400 °C was demonstrated. Additionally, the final printed porous mould de-powdered easily, and its recyclability was verified by strength testing various mass ratios of fresh and recycled powder. Therefore, through optimization of the material combinations and adjustment of the 3D printing process parameters, optimal gas permeability and moulding resolution could be achieved without any casting defect, while maintaining handling strength. The findings of this study demonstrate the potential of expanding the scope of powder-bed-based 3D printing of cement material to the casting market." @default.
- W4313252818 created "2023-01-06" @default.
- W4313252818 creator A5007154722 @default.
- W4313252818 creator A5016518253 @default.
- W4313252818 creator A5026917804 @default.
- W4313252818 creator A5040974071 @default.
- W4313252818 creator A5043068666 @default.
- W4313252818 creator A5057129787 @default.
- W4313252818 creator A5064430167 @default.
- W4313252818 creator A5067272028 @default.
- W4313252818 creator A5075102456 @default.
- W4313252818 date "2023-01-01" @default.
- W4313252818 modified "2023-09-30" @default.
- W4313252818 title "Powder-bed-based 3D printing with cement for sustainable casting" @default.
- W4313252818 cites W1495687927 @default.
- W4313252818 cites W1971955447 @default.
- W4313252818 cites W1985220427 @default.
- W4313252818 cites W1988488423 @default.
- W4313252818 cites W2015301604 @default.
- W4313252818 cites W2025326631 @default.
- W4313252818 cites W2029501590 @default.
- W4313252818 cites W2031095641 @default.
- W4313252818 cites W2038336124 @default.
- W4313252818 cites W2043005551 @default.
- W4313252818 cites W2048953917 @default.
- W4313252818 cites W2068474514 @default.
- W4313252818 cites W2070496936 @default.
- W4313252818 cites W2071436788 @default.
- W4313252818 cites W2077458096 @default.
- W4313252818 cites W2078976176 @default.
- W4313252818 cites W2082450384 @default.
- W4313252818 cites W2091098057 @default.
- W4313252818 cites W2092415972 @default.
- W4313252818 cites W2096628838 @default.
- W4313252818 cites W2103690935 @default.
- W4313252818 cites W2110388234 @default.
- W4313252818 cites W2136678910 @default.
- W4313252818 cites W2162062863 @default.
- W4313252818 cites W2183305019 @default.
- W4313252818 cites W2415648832 @default.
- W4313252818 cites W2485826029 @default.
- W4313252818 cites W2583873765 @default.
- W4313252818 cites W2589770449 @default.
- W4313252818 cites W2623665212 @default.
- W4313252818 cites W2741181432 @default.
- W4313252818 cites W2742060245 @default.
- W4313252818 cites W2742995094 @default.
- W4313252818 cites W2753713612 @default.
- W4313252818 cites W2790495205 @default.
- W4313252818 cites W2794158138 @default.
- W4313252818 cites W2808111968 @default.
- W4313252818 cites W2886045694 @default.
- W4313252818 cites W2886982351 @default.
- W4313252818 cites W2915100305 @default.
- W4313252818 cites W2933824395 @default.
- W4313252818 cites W2946998248 @default.
- W4313252818 cites W2952298560 @default.
- W4313252818 cites W2996158290 @default.
- W4313252818 cites W3000495758 @default.
- W4313252818 cites W3009169310 @default.
- W4313252818 cites W3024214572 @default.
- W4313252818 cites W3024964988 @default.
- W4313252818 cites W3030837007 @default.
- W4313252818 cites W3039409559 @default.
- W4313252818 cites W3043636757 @default.
- W4313252818 cites W3102770091 @default.
- W4313252818 cites W3112761260 @default.
- W4313252818 cites W3119063264 @default.
- W4313252818 cites W3134001033 @default.
- W4313252818 cites W3134559486 @default.
- W4313252818 cites W3153301172 @default.
- W4313252818 cites W877336968 @default.
- W4313252818 cites W3118522934 @default.
- W4313252818 doi "https://doi.org/10.1016/j.jmrt.2022.12.102" @default.
- W4313252818 hasPublicationYear "2023" @default.
- W4313252818 type Work @default.
- W4313252818 citedByCount "2" @default.
- W4313252818 countsByYear W43132528182023 @default.
- W4313252818 crossrefType "journal-article" @default.
- W4313252818 hasAuthorship W4313252818A5007154722 @default.
- W4313252818 hasAuthorship W4313252818A5016518253 @default.
- W4313252818 hasAuthorship W4313252818A5026917804 @default.
- W4313252818 hasAuthorship W4313252818A5040974071 @default.
- W4313252818 hasAuthorship W4313252818A5043068666 @default.
- W4313252818 hasAuthorship W4313252818A5057129787 @default.
- W4313252818 hasAuthorship W4313252818A5064430167 @default.
- W4313252818 hasAuthorship W4313252818A5067272028 @default.
- W4313252818 hasAuthorship W4313252818A5075102456 @default.
- W4313252818 hasConcept C104304963 @default.
- W4313252818 hasConcept C107365816 @default.
- W4313252818 hasConcept C132976073 @default.
- W4313252818 hasConcept C159985019 @default.
- W4313252818 hasConcept C16635281 @default.
- W4313252818 hasConcept C178790620 @default.
- W4313252818 hasConcept C185592680 @default.
- W4313252818 hasConcept C192562407 @default.
- W4313252818 hasConcept C206139338 @default.
- W4313252818 hasConcept C2780566776 @default.