Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313253257> ?p ?o ?g. }
- W4313253257 endingPage "103172" @default.
- W4313253257 startingPage "103172" @default.
- W4313253257 abstract "Pavement, as a kind of common public transit infrastructure, plays an important part in the daily passing and transportation-associated activities. The good conditions and smooth traffics of pavements matter significantly to the pavement users. However, due to long-time services, pavements often suffer from different kinds and severities of distresses, which might bring inconvenience to the pavement-related events, or even cause terrible traffic hazards. In this regard, we put forward a novel hybrid-window attentive vision transformer framework, called CrackFormer, for pavement crack detection aiming at providing an effective and automated solution to serving the pavement distress inspecting and repairing works. The CrackFormer employs a transformer-based high-resolution network architecture to rationally exploit and fuse multiscale feature semantics. To be specific, a hybrid-window based self-attention scheme is designed to extract feature semantics of entities both locally with dense windows and globally with sparse windows, which effectively improves the semantic details and accuracies. Moreover, a weighted multi-head self-attention philosophy is developed to recalibrate the contributions of different heads according to their relevance, which well enhances the feature encoding robustness and saliency. The CrackFormer is systematically tested on seven pavement crack detection datasets. Quantitative evaluations show that the CrackFormer achieves an overall performance with the precision of 0.9376, recall of 0.9352, and F1-score of 0.9364, respectively. In addition, qualitative examinations and comparative analyses all confirm the excellent performance of the CrackFormer for recognizing and delineating the pavement cracks of varying patterns under diverse pavement surface conditions." @default.
- W4313253257 created "2023-01-06" @default.
- W4313253257 creator A5007294871 @default.
- W4313253257 creator A5013912532 @default.
- W4313253257 creator A5023857538 @default.
- W4313253257 creator A5045825493 @default.
- W4313253257 creator A5067891265 @default.
- W4313253257 creator A5075321291 @default.
- W4313253257 date "2023-02-01" @default.
- W4313253257 modified "2023-10-18" @default.
- W4313253257 title "Pavement crack detection with hybrid-window attentive vision transformers" @default.
- W4313253257 cites W2511065100 @default.
- W4313253257 cites W2523358814 @default.
- W4313253257 cites W2560550165 @default.
- W4313253257 cites W2799323087 @default.
- W4313253257 cites W2884184663 @default.
- W4313253257 cites W2896894644 @default.
- W4313253257 cites W2899242765 @default.
- W4313253257 cites W2905163589 @default.
- W4313253257 cites W2942804812 @default.
- W4313253257 cites W2964308596 @default.
- W4313253257 cites W2989673213 @default.
- W4313253257 cites W2990192313 @default.
- W4313253257 cites W2997674080 @default.
- W4313253257 cites W3011233732 @default.
- W4313253257 cites W3014416595 @default.
- W4313253257 cites W3014583121 @default.
- W4313253257 cites W3014641072 @default.
- W4313253257 cites W3042600082 @default.
- W4313253257 cites W3043666220 @default.
- W4313253257 cites W3045728369 @default.
- W4313253257 cites W3082043672 @default.
- W4313253257 cites W3088228871 @default.
- W4313253257 cites W3099564553 @default.
- W4313253257 cites W3101670202 @default.
- W4313253257 cites W3111563719 @default.
- W4313253257 cites W3138516171 @default.
- W4313253257 cites W3166512019 @default.
- W4313253257 cites W3168326173 @default.
- W4313253257 cites W3177113646 @default.
- W4313253257 cites W3198586972 @default.
- W4313253257 cites W3198911825 @default.
- W4313253257 cites W3199054352 @default.
- W4313253257 cites W3214291416 @default.
- W4313253257 cites W4206312142 @default.
- W4313253257 cites W4210771511 @default.
- W4313253257 cites W4211062512 @default.
- W4313253257 cites W4220756717 @default.
- W4313253257 cites W4220780913 @default.
- W4313253257 cites W4220943253 @default.
- W4313253257 cites W4224237033 @default.
- W4313253257 cites W4224244676 @default.
- W4313253257 cites W4225984668 @default.
- W4313253257 cites W4226252340 @default.
- W4313253257 cites W4226408762 @default.
- W4313253257 cites W4281254198 @default.
- W4313253257 cites W4281696822 @default.
- W4313253257 cites W4281785683 @default.
- W4313253257 cites W4282917165 @default.
- W4313253257 cites W4282967568 @default.
- W4313253257 cites W4285060610 @default.
- W4313253257 cites W4285253730 @default.
- W4313253257 cites W4292656663 @default.
- W4313253257 cites W4296127101 @default.
- W4313253257 cites W4301044170 @default.
- W4313253257 cites W4308331377 @default.
- W4313253257 cites W4309047390 @default.
- W4313253257 cites W4312544429 @default.
- W4313253257 cites W4312577413 @default.
- W4313253257 doi "https://doi.org/10.1016/j.jag.2022.103172" @default.
- W4313253257 hasPublicationYear "2023" @default.
- W4313253257 type Work @default.
- W4313253257 citedByCount "3" @default.
- W4313253257 countsByYear W43132532572023 @default.
- W4313253257 crossrefType "journal-article" @default.
- W4313253257 hasAuthorship W4313253257A5007294871 @default.
- W4313253257 hasAuthorship W4313253257A5013912532 @default.
- W4313253257 hasAuthorship W4313253257A5023857538 @default.
- W4313253257 hasAuthorship W4313253257A5045825493 @default.
- W4313253257 hasAuthorship W4313253257A5067891265 @default.
- W4313253257 hasAuthorship W4313253257A5075321291 @default.
- W4313253257 hasBestOaLocation W43132532571 @default.
- W4313253257 hasConcept C104317684 @default.
- W4313253257 hasConcept C119599485 @default.
- W4313253257 hasConcept C127413603 @default.
- W4313253257 hasConcept C138885662 @default.
- W4313253257 hasConcept C154945302 @default.
- W4313253257 hasConcept C165696696 @default.
- W4313253257 hasConcept C165801399 @default.
- W4313253257 hasConcept C185592680 @default.
- W4313253257 hasConcept C2776401178 @default.
- W4313253257 hasConcept C38652104 @default.
- W4313253257 hasConcept C41008148 @default.
- W4313253257 hasConcept C41895202 @default.
- W4313253257 hasConcept C55493867 @default.
- W4313253257 hasConcept C63479239 @default.
- W4313253257 hasConcept C66322947 @default.
- W4313253257 hasConceptScore W4313253257C104317684 @default.