Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313253265> ?p ?o ?g. }
- W4313253265 endingPage "129034" @default.
- W4313253265 startingPage "129034" @default.
- W4313253265 abstract "Nature-inspired optimization is an active area of research in the artificial intelligence (AI) field and has recently been adopted in hydrology for the calibration (training) of both process-based and statistical models. This study proposes an improved AI model, Augmented Artificial Ecosystem Optimization-based Multi-Layer Perceptron (AAEO-MLP), to build a monthly groundwater level (GWL) forecasting model. AAEO-MLP model is built on the novel Augmented version of Artificial Ecosystem Optimization and traditional MLP network. In AAEO, Levy-flight trajectory and Gaussian random are utilized in exploration and exploitation to improve the optimizing ability. The AAEO-MLP model is tested on two time-series (1989–2012) datasets collected at two wells in India. Various explanatory variables such as monthly cumulative precipitation, mean temperature, tidal height, and previous measurements of GWL were considered for predicting 1-month ahead of GWL. The performance of AAEO-MLP was benchmarked against 17 different models (original AEO, 3 different variants of AEO, and 13 well-known models) in terms of forecasting accuracy based on six metrics (e.g., mean absolute error, root mean square error, Kling–Gupta efficiency, normalized Nash–Sutcliffe efficiency, Pearson’s correlation index, a20 index). Furthermore, convergence analysis and model stability are employed to indicate the effectiveness of AAEO-MLP. The compared results express that the AAEO-MLP is superior to other models in terms of prediction accuracy, convergence, and stability. Overall, the results depict that the AAEO is a promising approach for optimizing machine learning models (e.g., MLP) and should be explored for other hydrological forecasting applications (e.g., streamflow, rainfall) to further assess its strengths over existing methods." @default.
- W4313253265 created "2023-01-06" @default.
- W4313253265 creator A5007923069 @default.
- W4313253265 creator A5016315589 @default.
- W4313253265 creator A5048448464 @default.
- W4313253265 creator A5056915874 @default.
- W4313253265 creator A5078131834 @default.
- W4313253265 date "2023-02-01" @default.
- W4313253265 modified "2023-10-09" @default.
- W4313253265 title "Groundwater level modeling using Augmented Artificial Ecosystem Optimization" @default.
- W4313253265 cites W1542622005 @default.
- W4313253265 cites W1738221900 @default.
- W4313253265 cites W1867336439 @default.
- W4313253265 cites W192530852 @default.
- W4313253265 cites W1974895230 @default.
- W4313253265 cites W1984828310 @default.
- W4313253265 cites W1985839444 @default.
- W4313253265 cites W1992012555 @default.
- W4313253265 cites W2028003655 @default.
- W4313253265 cites W2033731173 @default.
- W4313253265 cites W2042327446 @default.
- W4313253265 cites W2045944858 @default.
- W4313253265 cites W2056811412 @default.
- W4313253265 cites W2069361022 @default.
- W4313253265 cites W2084278611 @default.
- W4313253265 cites W2106371033 @default.
- W4313253265 cites W2127367343 @default.
- W4313253265 cites W2136535008 @default.
- W4313253265 cites W2151554678 @default.
- W4313253265 cites W2164770682 @default.
- W4313253265 cites W2181460351 @default.
- W4313253265 cites W2232317135 @default.
- W4313253265 cites W2282226143 @default.
- W4313253265 cites W2286961399 @default.
- W4313253265 cites W2289326956 @default.
- W4313253265 cites W2290883490 @default.
- W4313253265 cites W2299228984 @default.
- W4313253265 cites W2311533087 @default.
- W4313253265 cites W2343635321 @default.
- W4313253265 cites W2345208410 @default.
- W4313253265 cites W2487385493 @default.
- W4313253265 cites W2553852618 @default.
- W4313253265 cites W2573054668 @default.
- W4313253265 cites W2573137292 @default.
- W4313253265 cites W2573212983 @default.
- W4313253265 cites W2587579504 @default.
- W4313253265 cites W2607522207 @default.
- W4313253265 cites W2610544564 @default.
- W4313253265 cites W2620983293 @default.
- W4313253265 cites W2742937774 @default.
- W4313253265 cites W2756670611 @default.
- W4313253265 cites W2770073247 @default.
- W4313253265 cites W2793758168 @default.
- W4313253265 cites W2800763954 @default.
- W4313253265 cites W2802276444 @default.
- W4313253265 cites W2830592823 @default.
- W4313253265 cites W2885191712 @default.
- W4313253265 cites W2888786409 @default.
- W4313253265 cites W2892659004 @default.
- W4313253265 cites W2901312569 @default.
- W4313253265 cites W2902421512 @default.
- W4313253265 cites W2903347319 @default.
- W4313253265 cites W2907891425 @default.
- W4313253265 cites W2908965886 @default.
- W4313253265 cites W2909846570 @default.
- W4313253265 cites W2911052303 @default.
- W4313253265 cites W2911668399 @default.
- W4313253265 cites W2914717758 @default.
- W4313253265 cites W2919979744 @default.
- W4313253265 cites W2921467030 @default.
- W4313253265 cites W2943528199 @default.
- W4313253265 cites W2944829093 @default.
- W4313253265 cites W2946072666 @default.
- W4313253265 cites W2951651174 @default.
- W4313253265 cites W2956635220 @default.
- W4313253265 cites W2962182762 @default.
- W4313253265 cites W2964046485 @default.
- W4313253265 cites W2964055987 @default.
- W4313253265 cites W2972302268 @default.
- W4313253265 cites W2992667929 @default.
- W4313253265 cites W2995378905 @default.
- W4313253265 cites W3000391877 @default.
- W4313253265 cites W3004669071 @default.
- W4313253265 cites W3005898487 @default.
- W4313253265 cites W3006591431 @default.
- W4313253265 cites W3007433880 @default.
- W4313253265 cites W3009328342 @default.
- W4313253265 cites W3014974411 @default.
- W4313253265 cites W3015778920 @default.
- W4313253265 cites W3017323153 @default.
- W4313253265 cites W3037569886 @default.
- W4313253265 cites W3038061982 @default.
- W4313253265 cites W3044272365 @default.
- W4313253265 cites W3091754287 @default.
- W4313253265 cites W3119051141 @default.
- W4313253265 cites W3123888896 @default.
- W4313253265 cites W3137746357 @default.
- W4313253265 cites W3199607649 @default.