Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313253622> ?p ?o ?g. }
- W4313253622 endingPage "119459" @default.
- W4313253622 startingPage "119459" @default.
- W4313253622 abstract "This paper presents a collision-free active sensing algorithm that safely and efficiently searches for the maximum point while reconstructing the unknown environment field. Bayesian optimization (BO) for optimizing the unknown function with Gaussian processes (GPs) is used for active sensing with a new acquisition function. Besides, the mobile sensor estimates Euclidean signed distance field using GPs to avoid obstacles with its fast collision checking capability. To mitigate the local maximum problem, Monte Carlo tree search (MCTS), one of state-of-the-art planning techniques, is adopted as a non-myopic planner. In particular, obstacle avoidance and active sensing are integrated into a unified framework using a safe BO algorithm (known as SafeOpt-MC) based on GPs and MCTS. Numerical simulations are performed to validate the feasibility and performance of the proposed framework with a diverse set of environments." @default.
- W4313253622 created "2023-01-06" @default.
- W4313253622 creator A5005728041 @default.
- W4313253622 creator A5022579538 @default.
- W4313253622 creator A5053630902 @default.
- W4313253622 date "2023-04-01" @default.
- W4313253622 modified "2023-09-23" @default.
- W4313253622 title "Collision-free active sensing for maximum seeking of unknown environment fields with Gaussian processes" @default.
- W4313253622 cites W1500868819 @default.
- W4313253622 cites W161513061 @default.
- W4313253622 cites W1714211023 @default.
- W4313253622 cites W1987648924 @default.
- W4313253622 cites W1998406909 @default.
- W4313253622 cites W1999316264 @default.
- W4313253622 cites W2046695302 @default.
- W4313253622 cites W2072931689 @default.
- W4313253622 cites W2143277772 @default.
- W4313253622 cites W2257979135 @default.
- W4313253622 cites W2772356073 @default.
- W4313253622 cites W2788084076 @default.
- W4313253622 cites W2891435172 @default.
- W4313253622 cites W2949060325 @default.
- W4313253622 cites W2962911744 @default.
- W4313253622 cites W2963474846 @default.
- W4313253622 cites W2963945780 @default.
- W4313253622 cites W2999237103 @default.
- W4313253622 cites W3004227484 @default.
- W4313253622 cites W3015710275 @default.
- W4313253622 cites W3038930016 @default.
- W4313253622 cites W3044932790 @default.
- W4313253622 cites W3098799846 @default.
- W4313253622 cites W3102365391 @default.
- W4313253622 cites W3104558707 @default.
- W4313253622 cites W3171864292 @default.
- W4313253622 cites W750766922 @default.
- W4313253622 doi "https://doi.org/10.1016/j.eswa.2022.119459" @default.
- W4313253622 hasPublicationYear "2023" @default.
- W4313253622 type Work @default.
- W4313253622 citedByCount "0" @default.
- W4313253622 crossrefType "journal-article" @default.
- W4313253622 hasAuthorship W4313253622A5005728041 @default.
- W4313253622 hasAuthorship W4313253622A5022579538 @default.
- W4313253622 hasAuthorship W4313253622A5053630902 @default.
- W4313253622 hasConcept C105795698 @default.
- W4313253622 hasConcept C113174947 @default.
- W4313253622 hasConcept C11413529 @default.
- W4313253622 hasConcept C121332964 @default.
- W4313253622 hasConcept C121704057 @default.
- W4313253622 hasConcept C126255220 @default.
- W4313253622 hasConcept C134306372 @default.
- W4313253622 hasConcept C14036430 @default.
- W4313253622 hasConcept C154945302 @default.
- W4313253622 hasConcept C163716315 @default.
- W4313253622 hasConcept C177264268 @default.
- W4313253622 hasConcept C19499675 @default.
- W4313253622 hasConcept C199360897 @default.
- W4313253622 hasConcept C2778049539 @default.
- W4313253622 hasConcept C2780864053 @default.
- W4313253622 hasConcept C33923547 @default.
- W4313253622 hasConcept C38652104 @default.
- W4313253622 hasConcept C41008148 @default.
- W4313253622 hasConcept C46149586 @default.
- W4313253622 hasConcept C60229501 @default.
- W4313253622 hasConcept C61326573 @default.
- W4313253622 hasConcept C62520636 @default.
- W4313253622 hasConcept C76155785 @default.
- W4313253622 hasConcept C78458016 @default.
- W4313253622 hasConcept C79403827 @default.
- W4313253622 hasConcept C81074085 @default.
- W4313253622 hasConcept C86803240 @default.
- W4313253622 hasConcept C90509273 @default.
- W4313253622 hasConceptScore W4313253622C105795698 @default.
- W4313253622 hasConceptScore W4313253622C113174947 @default.
- W4313253622 hasConceptScore W4313253622C11413529 @default.
- W4313253622 hasConceptScore W4313253622C121332964 @default.
- W4313253622 hasConceptScore W4313253622C121704057 @default.
- W4313253622 hasConceptScore W4313253622C126255220 @default.
- W4313253622 hasConceptScore W4313253622C134306372 @default.
- W4313253622 hasConceptScore W4313253622C14036430 @default.
- W4313253622 hasConceptScore W4313253622C154945302 @default.
- W4313253622 hasConceptScore W4313253622C163716315 @default.
- W4313253622 hasConceptScore W4313253622C177264268 @default.
- W4313253622 hasConceptScore W4313253622C19499675 @default.
- W4313253622 hasConceptScore W4313253622C199360897 @default.
- W4313253622 hasConceptScore W4313253622C2778049539 @default.
- W4313253622 hasConceptScore W4313253622C2780864053 @default.
- W4313253622 hasConceptScore W4313253622C33923547 @default.
- W4313253622 hasConceptScore W4313253622C38652104 @default.
- W4313253622 hasConceptScore W4313253622C41008148 @default.
- W4313253622 hasConceptScore W4313253622C46149586 @default.
- W4313253622 hasConceptScore W4313253622C60229501 @default.
- W4313253622 hasConceptScore W4313253622C61326573 @default.
- W4313253622 hasConceptScore W4313253622C62520636 @default.
- W4313253622 hasConceptScore W4313253622C76155785 @default.
- W4313253622 hasConceptScore W4313253622C78458016 @default.
- W4313253622 hasConceptScore W4313253622C79403827 @default.
- W4313253622 hasConceptScore W4313253622C81074085 @default.
- W4313253622 hasConceptScore W4313253622C86803240 @default.