Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313255495> ?p ?o ?g. }
- W4313255495 endingPage "100103" @default.
- W4313255495 startingPage "100103" @default.
- W4313255495 abstract "Machine learning has shown great potential in various domains, but its appearance in inventory control optimization settings remains rather limited. We propose a novel inventory cost minimization framework that exploits advanced decision-tree based models to approximate inventory performance at an item level, considering demand patterns and key replenishment policy parameters as input. The suggested approach enables data-driven approximations that are faster to perform compared to standard inventory simulations, while being flexible in terms of the methods used for forecasting demand or estimating inventory level, lost sales, and number of orders, among others. Moreover, such approximations can be based on knowledge extracted from different sets of items than the ones being optimized, thus providing more accurate proposals in cases where historical data are scarce or highly affected by stock-outs. The framework was evaluated using part of the M5 competition’s data. Our results suggest that the proposed framework, and especially its transfer learning variant, can result in significant improvements, both in terms of total inventory cost and realized service level." @default.
- W4313255495 created "2023-01-06" @default.
- W4313255495 creator A5015832946 @default.
- W4313255495 creator A5044505993 @default.
- W4313255495 creator A5085772089 @default.
- W4313255495 date "2023-01-01" @default.
- W4313255495 modified "2023-10-14" @default.
- W4313255495 title "Optimizing inventory control through a data-driven and model-independent framework" @default.
- W4313255495 cites W1972835575 @default.
- W4313255495 cites W1982482648 @default.
- W4313255495 cites W1988514978 @default.
- W4313255495 cites W1989787309 @default.
- W4313255495 cites W1995609092 @default.
- W4313255495 cites W1998785640 @default.
- W4313255495 cites W2008478452 @default.
- W4313255495 cites W2010295033 @default.
- W4313255495 cites W2012014261 @default.
- W4313255495 cites W2020930300 @default.
- W4313255495 cites W2031242208 @default.
- W4313255495 cites W2032994802 @default.
- W4313255495 cites W2043520942 @default.
- W4313255495 cites W2055311466 @default.
- W4313255495 cites W2057907828 @default.
- W4313255495 cites W2058381658 @default.
- W4313255495 cites W2083318797 @default.
- W4313255495 cites W2088044599 @default.
- W4313255495 cites W2089779995 @default.
- W4313255495 cites W2110688718 @default.
- W4313255495 cites W2114733835 @default.
- W4313255495 cites W2115264683 @default.
- W4313255495 cites W2132782512 @default.
- W4313255495 cites W2136192534 @default.
- W4313255495 cites W2146771051 @default.
- W4313255495 cites W2165567769 @default.
- W4313255495 cites W2411732960 @default.
- W4313255495 cites W2522677611 @default.
- W4313255495 cites W2802321709 @default.
- W4313255495 cites W2894999754 @default.
- W4313255495 cites W2942640611 @default.
- W4313255495 cites W3028203448 @default.
- W4313255495 cites W3080683114 @default.
- W4313255495 cites W3082548640 @default.
- W4313255495 cites W3184770056 @default.
- W4313255495 cites W3193651354 @default.
- W4313255495 cites W3201545571 @default.
- W4313255495 cites W3202759651 @default.
- W4313255495 cites W3211125165 @default.
- W4313255495 cites W4206173445 @default.
- W4313255495 cites W4210432499 @default.
- W4313255495 cites W4210555767 @default.
- W4313255495 doi "https://doi.org/10.1016/j.ejtl.2022.100103" @default.
- W4313255495 hasPublicationYear "2023" @default.
- W4313255495 type Work @default.
- W4313255495 citedByCount "4" @default.
- W4313255495 countsByYear W43132554952023 @default.
- W4313255495 crossrefType "journal-article" @default.
- W4313255495 hasAuthorship W4313255495A5015832946 @default.
- W4313255495 hasAuthorship W4313255495A5044505993 @default.
- W4313255495 hasAuthorship W4313255495A5085772089 @default.
- W4313255495 hasBestOaLocation W43132554951 @default.
- W4313255495 hasConcept C108713360 @default.
- W4313255495 hasConcept C117938511 @default.
- W4313255495 hasConcept C119857082 @default.
- W4313255495 hasConcept C126255220 @default.
- W4313255495 hasConcept C127413603 @default.
- W4313255495 hasConcept C147764199 @default.
- W4313255495 hasConcept C154945302 @default.
- W4313255495 hasConcept C165696696 @default.
- W4313255495 hasConcept C17744445 @default.
- W4313255495 hasConcept C199360897 @default.
- W4313255495 hasConcept C199539241 @default.
- W4313255495 hasConcept C24373527 @default.
- W4313255495 hasConcept C26517878 @default.
- W4313255495 hasConcept C33923547 @default.
- W4313255495 hasConcept C38652104 @default.
- W4313255495 hasConcept C41008148 @default.
- W4313255495 hasConcept C42475967 @default.
- W4313255495 hasConceptScore W4313255495C108713360 @default.
- W4313255495 hasConceptScore W4313255495C117938511 @default.
- W4313255495 hasConceptScore W4313255495C119857082 @default.
- W4313255495 hasConceptScore W4313255495C126255220 @default.
- W4313255495 hasConceptScore W4313255495C127413603 @default.
- W4313255495 hasConceptScore W4313255495C147764199 @default.
- W4313255495 hasConceptScore W4313255495C154945302 @default.
- W4313255495 hasConceptScore W4313255495C165696696 @default.
- W4313255495 hasConceptScore W4313255495C17744445 @default.
- W4313255495 hasConceptScore W4313255495C199360897 @default.
- W4313255495 hasConceptScore W4313255495C199539241 @default.
- W4313255495 hasConceptScore W4313255495C24373527 @default.
- W4313255495 hasConceptScore W4313255495C26517878 @default.
- W4313255495 hasConceptScore W4313255495C33923547 @default.
- W4313255495 hasConceptScore W4313255495C38652104 @default.
- W4313255495 hasConceptScore W4313255495C41008148 @default.
- W4313255495 hasConceptScore W4313255495C42475967 @default.
- W4313255495 hasLocation W43132554951 @default.
- W4313255495 hasOpenAccess W4313255495 @default.
- W4313255495 hasPrimaryLocation W43132554951 @default.
- W4313255495 hasRelatedWork W1969643755 @default.