Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256380> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313256380 endingPage "170450" @default.
- W4313256380 startingPage "170450" @default.
- W4313256380 abstract "Deep neural networks and machine learning have made many real-world tasks easier. They can analyze large data sets that humans can't. Deep neural networks can be utilized for image, video, and sound matching, making them an intriguing research area. This research focuses on semi-supervised training and proposes a enhanced semi-supervised learning strategy. Robots can learn from labeled and unlabeled data with semi-supervised learning. Supervised learning employs labeled data. Semi-supervised learning is used to govern the Deep neural network's output. Assigning values to input groups and accessing the output area have no interaction. This method seeks to deliver a more efficient learning approach with an equitable distribution of output throughout the output field of space, and the authors developed an ensemble strategy based on three deep learning approaches (Convolution Deep neural network, Alexnet, and MobileNetv2). The result is a more effective learning approach. The handwritten digit experiment was 90.74 percent accurate, whereas Alzheimer's detection was 99.76 percent accurate. When the proposed strategy was used on two experimental data sets, the accuracy was better than when different applications used Siamese Deep neural networks." @default.
- W4313256380 created "2023-01-06" @default.
- W4313256380 creator A5034393779 @default.
- W4313256380 creator A5046879358 @default.
- W4313256380 creator A5063637034 @default.
- W4313256380 creator A5084378539 @default.
- W4313256380 date "2022-12-01" @default.
- W4313256380 modified "2023-10-12" @default.
- W4313256380 title "Semi-Supervised Learning with Ensemble Deep Learning Networks for Descriptor Generation" @default.
- W4313256380 cites W2124386111 @default.
- W4313256380 cites W2805494981 @default.
- W4313256380 cites W2942305465 @default.
- W4313256380 cites W2957500985 @default.
- W4313256380 cites W2963363970 @default.
- W4313256380 cites W2982360566 @default.
- W4313256380 cites W3005273529 @default.
- W4313256380 cites W3022089060 @default.
- W4313256380 cites W3093282011 @default.
- W4313256380 cites W4205550060 @default.
- W4313256380 cites W4211152905 @default.
- W4313256380 cites W4241061476 @default.
- W4313256380 cites W4280579602 @default.
- W4313256380 cites W4283735058 @default.
- W4313256380 cites W4285265374 @default.
- W4313256380 cites W4288081727 @default.
- W4313256380 cites W4304761908 @default.
- W4313256380 doi "https://doi.org/10.1016/j.ijleo.2022.170450" @default.
- W4313256380 hasPublicationYear "2022" @default.
- W4313256380 type Work @default.
- W4313256380 citedByCount "0" @default.
- W4313256380 crossrefType "journal-article" @default.
- W4313256380 hasAuthorship W4313256380A5034393779 @default.
- W4313256380 hasAuthorship W4313256380A5046879358 @default.
- W4313256380 hasAuthorship W4313256380A5063637034 @default.
- W4313256380 hasAuthorship W4313256380A5084378539 @default.
- W4313256380 hasConcept C108583219 @default.
- W4313256380 hasConcept C119857082 @default.
- W4313256380 hasConcept C136389625 @default.
- W4313256380 hasConcept C153180895 @default.
- W4313256380 hasConcept C154945302 @default.
- W4313256380 hasConcept C202444582 @default.
- W4313256380 hasConcept C33923547 @default.
- W4313256380 hasConcept C41008148 @default.
- W4313256380 hasConcept C45942800 @default.
- W4313256380 hasConcept C50644808 @default.
- W4313256380 hasConcept C58973888 @default.
- W4313256380 hasConcept C81363708 @default.
- W4313256380 hasConcept C9652623 @default.
- W4313256380 hasConceptScore W4313256380C108583219 @default.
- W4313256380 hasConceptScore W4313256380C119857082 @default.
- W4313256380 hasConceptScore W4313256380C136389625 @default.
- W4313256380 hasConceptScore W4313256380C153180895 @default.
- W4313256380 hasConceptScore W4313256380C154945302 @default.
- W4313256380 hasConceptScore W4313256380C202444582 @default.
- W4313256380 hasConceptScore W4313256380C33923547 @default.
- W4313256380 hasConceptScore W4313256380C41008148 @default.
- W4313256380 hasConceptScore W4313256380C45942800 @default.
- W4313256380 hasConceptScore W4313256380C50644808 @default.
- W4313256380 hasConceptScore W4313256380C58973888 @default.
- W4313256380 hasConceptScore W4313256380C81363708 @default.
- W4313256380 hasConceptScore W4313256380C9652623 @default.
- W4313256380 hasLocation W43132563801 @default.
- W4313256380 hasOpenAccess W4313256380 @default.
- W4313256380 hasPrimaryLocation W43132563801 @default.
- W4313256380 hasRelatedWork W2337926734 @default.
- W4313256380 hasRelatedWork W2738221750 @default.
- W4313256380 hasRelatedWork W2908875379 @default.
- W4313256380 hasRelatedWork W3156786002 @default.
- W4313256380 hasRelatedWork W4311257506 @default.
- W4313256380 hasRelatedWork W4312831135 @default.
- W4313256380 hasRelatedWork W4318677156 @default.
- W4313256380 hasRelatedWork W4319309271 @default.
- W4313256380 hasRelatedWork W4321369474 @default.
- W4313256380 hasRelatedWork W564581980 @default.
- W4313256380 isParatext "false" @default.
- W4313256380 isRetracted "false" @default.
- W4313256380 workType "article" @default.