Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256483> ?p ?o ?g. }
- W4313256483 endingPage "103392" @default.
- W4313256483 startingPage "103392" @default.
- W4313256483 abstract "In this paper, we propose a novel approach to solve nonlinear stress analysis problems in shell structures using an image processing technique. In general, such problems in design optimisation or virtual reality applications must be solved repetitively in a short period using direct methods such as nonlinear finite element analysis. Hence, obtaining solutions in real-time using direct methods can quickly become computationally overwhelming. The proposed method in this paper is unique in that it converts the mechanical behaviour of shell structures into images that are then used to train a machine learning algorithm. This is achieved by mapping shell deformations and stresses to a set of images that are used to train a conditional generative adversarial network. The network can then predict the solution of the problem for a varying range of parameters. The proposed approach can be significantly more efficient than training a machine learning algorithm using the raw numerical data. To evaluate the proposed method, two different structures are assessed where the training data is created using nonlinear finite element analysis. Each structure is studied for a varying geometry and a set of material properties. We show that the results of the trained network agree well with the results of the nonlinear finite element analysis. The proposed approach can quickly and accurately predict the mechanical behaviour of the structure using a fraction of the computational cost. All created data and source codes are openly available." @default.
- W4313256483 created "2023-01-06" @default.
- W4313256483 creator A5003524115 @default.
- W4313256483 creator A5016959403 @default.
- W4313256483 creator A5068252244 @default.
- W4313256483 date "2023-02-01" @default.
- W4313256483 modified "2023-09-26" @default.
- W4313256483 title "Nonlinear analysis of shell structures using image processing and machine learning" @default.
- W4313256483 cites W1498436455 @default.
- W4313256483 cites W1970589747 @default.
- W4313256483 cites W1984516949 @default.
- W4313256483 cites W1991963068 @default.
- W4313256483 cites W1992808109 @default.
- W4313256483 cites W2006611399 @default.
- W4313256483 cites W2020003506 @default.
- W4313256483 cites W2030924582 @default.
- W4313256483 cites W2085924785 @default.
- W4313256483 cites W2087572990 @default.
- W4313256483 cites W2104572044 @default.
- W4313256483 cites W2107641461 @default.
- W4313256483 cites W2113377343 @default.
- W4313256483 cites W2127328237 @default.
- W4313256483 cites W2143382051 @default.
- W4313256483 cites W2154784399 @default.
- W4313256483 cites W2345838835 @default.
- W4313256483 cites W2400991165 @default.
- W4313256483 cites W2531264786 @default.
- W4313256483 cites W2533703954 @default.
- W4313256483 cites W2533800772 @default.
- W4313256483 cites W271144151 @default.
- W4313256483 cites W2763214034 @default.
- W4313256483 cites W2766679700 @default.
- W4313256483 cites W2799597343 @default.
- W4313256483 cites W2805031610 @default.
- W4313256483 cites W2900511825 @default.
- W4313256483 cites W2917176305 @default.
- W4313256483 cites W2919507395 @default.
- W4313256483 cites W2959442911 @default.
- W4313256483 cites W2978281981 @default.
- W4313256483 cites W2982111168 @default.
- W4313256483 cites W2982525369 @default.
- W4313256483 cites W2991970757 @default.
- W4313256483 cites W3021810927 @default.
- W4313256483 cites W3025645353 @default.
- W4313256483 cites W3049609037 @default.
- W4313256483 cites W3080756567 @default.
- W4313256483 cites W3093605970 @default.
- W4313256483 cites W3096600878 @default.
- W4313256483 cites W3111308046 @default.
- W4313256483 cites W3112164745 @default.
- W4313256483 cites W3112374594 @default.
- W4313256483 cites W3122043357 @default.
- W4313256483 cites W3125250686 @default.
- W4313256483 cites W3135705775 @default.
- W4313256483 cites W3137392741 @default.
- W4313256483 cites W3140906137 @default.
- W4313256483 cites W3158049979 @default.
- W4313256483 cites W3159786647 @default.
- W4313256483 cites W3163993681 @default.
- W4313256483 cites W3211801636 @default.
- W4313256483 cites W3215227068 @default.
- W4313256483 cites W3217049684 @default.
- W4313256483 cites W4283370293 @default.
- W4313256483 cites W4285082580 @default.
- W4313256483 doi "https://doi.org/10.1016/j.advengsoft.2022.103392" @default.
- W4313256483 hasPublicationYear "2023" @default.
- W4313256483 type Work @default.
- W4313256483 citedByCount "2" @default.
- W4313256483 countsByYear W43132564832023 @default.
- W4313256483 crossrefType "journal-article" @default.
- W4313256483 hasAuthorship W4313256483A5003524115 @default.
- W4313256483 hasAuthorship W4313256483A5016959403 @default.
- W4313256483 hasAuthorship W4313256483A5068252244 @default.
- W4313256483 hasBestOaLocation W43132564831 @default.
- W4313256483 hasConcept C11413529 @default.
- W4313256483 hasConcept C115961682 @default.
- W4313256483 hasConcept C121332964 @default.
- W4313256483 hasConcept C127413603 @default.
- W4313256483 hasConcept C135628077 @default.
- W4313256483 hasConcept C146978453 @default.
- W4313256483 hasConcept C154945302 @default.
- W4313256483 hasConcept C158622935 @default.
- W4313256483 hasConcept C177264268 @default.
- W4313256483 hasConcept C199360897 @default.
- W4313256483 hasConcept C204323151 @default.
- W4313256483 hasConcept C2781052500 @default.
- W4313256483 hasConcept C41008148 @default.
- W4313256483 hasConcept C62520636 @default.
- W4313256483 hasConcept C66938386 @default.
- W4313256483 hasConcept C78519656 @default.
- W4313256483 hasConcept C9417928 @default.
- W4313256483 hasConceptScore W4313256483C11413529 @default.
- W4313256483 hasConceptScore W4313256483C115961682 @default.
- W4313256483 hasConceptScore W4313256483C121332964 @default.
- W4313256483 hasConceptScore W4313256483C127413603 @default.
- W4313256483 hasConceptScore W4313256483C135628077 @default.
- W4313256483 hasConceptScore W4313256483C146978453 @default.
- W4313256483 hasConceptScore W4313256483C154945302 @default.