Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256489> ?p ?o ?g. }
- W4313256489 endingPage "104745" @default.
- W4313256489 startingPage "104745" @default.
- W4313256489 abstract "In metabolomics, data generated by untargeted approaches can be very complex due to the typically extensive number of features in raw data (with and without chemical relevance), dependence on raw data preprocessing methods, and lack of selective data mining tools to appropriately interpret these data. Extraction of meaningful information from these data is still a significant challenge in metabolomics. Moreover, currently available tools may overprocess the data, eliminating useful information. This work aims at proposing a data mining tool capable of dealing with metabolomics data, specifically liquid chromatography-mass spectrometry (LC-MS) to enhance the extraction of meaningful chemical information. The algorithm construction intended to be as general as possible in highlighting chemically relevant features, discarding non-informative signals specially background features. The proposed algorithm was applied to an LC-MS data set generated from the analysis of grapes collected over a developmental period encompassing a 4-month period. The algorithm outcome is a short list of features from metabolites that are worth to be further investigated, for example by HRMS fragmentation for subsequent identification. The performance of the algorithm in estimating potentially interesting features was compared with the commercial MZmine software. For this case study, the MZmine output yielded a final set of 37 features (out of 1543 initially identified) with noise features while the proposed algorithm identified 99 systematic features without noise. Also, the algorithm required 2 times less user-defined parameters when compared to MZmine. Globally, the proposed algorithm demonstrated a higher ability to pin-point features that may be associated with grapes developmental and maturation processes requiring minimal parameters definition, thus preventing user uncertainty and the compromise of experimental information." @default.
- W4313256489 created "2023-01-06" @default.
- W4313256489 creator A5005789586 @default.
- W4313256489 creator A5011058680 @default.
- W4313256489 creator A5032315243 @default.
- W4313256489 creator A5046428337 @default.
- W4313256489 creator A5059250483 @default.
- W4313256489 creator A5076244110 @default.
- W4313256489 date "2023-02-01" @default.
- W4313256489 modified "2023-09-26" @default.
- W4313256489 title "A data mining tool for untargeted biomarkers analysis: Grapes ripening application" @default.
- W4313256489 cites W1562985455 @default.
- W4313256489 cites W1989299822 @default.
- W4313256489 cites W2017979364 @default.
- W4313256489 cites W2025025236 @default.
- W4313256489 cites W2033920917 @default.
- W4313256489 cites W2036740013 @default.
- W4313256489 cites W2144054945 @default.
- W4313256489 cites W2218869304 @default.
- W4313256489 cites W2344650662 @default.
- W4313256489 cites W2504864929 @default.
- W4313256489 cites W2523233421 @default.
- W4313256489 cites W2761141956 @default.
- W4313256489 cites W2800177705 @default.
- W4313256489 cites W2920836092 @default.
- W4313256489 cites W2945264555 @default.
- W4313256489 cites W2950625953 @default.
- W4313256489 cites W2996288606 @default.
- W4313256489 cites W3013665949 @default.
- W4313256489 cites W3046356390 @default.
- W4313256489 cites W3082358088 @default.
- W4313256489 cites W3108831716 @default.
- W4313256489 cites W3109387868 @default.
- W4313256489 cites W3155525991 @default.
- W4313256489 cites W3163726275 @default.
- W4313256489 cites W3170416018 @default.
- W4313256489 cites W4281760970 @default.
- W4313256489 doi "https://doi.org/10.1016/j.chemolab.2022.104745" @default.
- W4313256489 hasPublicationYear "2023" @default.
- W4313256489 type Work @default.
- W4313256489 citedByCount "0" @default.
- W4313256489 crossrefType "journal-article" @default.
- W4313256489 hasAuthorship W4313256489A5005789586 @default.
- W4313256489 hasAuthorship W4313256489A5011058680 @default.
- W4313256489 hasAuthorship W4313256489A5032315243 @default.
- W4313256489 hasAuthorship W4313256489A5046428337 @default.
- W4313256489 hasAuthorship W4313256489A5059250483 @default.
- W4313256489 hasAuthorship W4313256489A5076244110 @default.
- W4313256489 hasBestOaLocation W43132564891 @default.
- W4313256489 hasConcept C10551718 @default.
- W4313256489 hasConcept C115961682 @default.
- W4313256489 hasConcept C116834253 @default.
- W4313256489 hasConcept C124101348 @default.
- W4313256489 hasConcept C132964779 @default.
- W4313256489 hasConcept C154945302 @default.
- W4313256489 hasConcept C158154518 @default.
- W4313256489 hasConcept C177264268 @default.
- W4313256489 hasConcept C17744445 @default.
- W4313256489 hasConcept C185592680 @default.
- W4313256489 hasConcept C195807954 @default.
- W4313256489 hasConcept C199360897 @default.
- W4313256489 hasConcept C199539241 @default.
- W4313256489 hasConcept C21565614 @default.
- W4313256489 hasConcept C2777466982 @default.
- W4313256489 hasConcept C2777904410 @default.
- W4313256489 hasConcept C2779473830 @default.
- W4313256489 hasConcept C34736171 @default.
- W4313256489 hasConcept C41008148 @default.
- W4313256489 hasConcept C43617362 @default.
- W4313256489 hasConcept C55493867 @default.
- W4313256489 hasConcept C58489278 @default.
- W4313256489 hasConcept C59822182 @default.
- W4313256489 hasConcept C86803240 @default.
- W4313256489 hasConcept C99498987 @default.
- W4313256489 hasConceptScore W4313256489C10551718 @default.
- W4313256489 hasConceptScore W4313256489C115961682 @default.
- W4313256489 hasConceptScore W4313256489C116834253 @default.
- W4313256489 hasConceptScore W4313256489C124101348 @default.
- W4313256489 hasConceptScore W4313256489C132964779 @default.
- W4313256489 hasConceptScore W4313256489C154945302 @default.
- W4313256489 hasConceptScore W4313256489C158154518 @default.
- W4313256489 hasConceptScore W4313256489C177264268 @default.
- W4313256489 hasConceptScore W4313256489C17744445 @default.
- W4313256489 hasConceptScore W4313256489C185592680 @default.
- W4313256489 hasConceptScore W4313256489C195807954 @default.
- W4313256489 hasConceptScore W4313256489C199360897 @default.
- W4313256489 hasConceptScore W4313256489C199539241 @default.
- W4313256489 hasConceptScore W4313256489C21565614 @default.
- W4313256489 hasConceptScore W4313256489C2777466982 @default.
- W4313256489 hasConceptScore W4313256489C2777904410 @default.
- W4313256489 hasConceptScore W4313256489C2779473830 @default.
- W4313256489 hasConceptScore W4313256489C34736171 @default.
- W4313256489 hasConceptScore W4313256489C41008148 @default.
- W4313256489 hasConceptScore W4313256489C43617362 @default.
- W4313256489 hasConceptScore W4313256489C55493867 @default.
- W4313256489 hasConceptScore W4313256489C58489278 @default.
- W4313256489 hasConceptScore W4313256489C59822182 @default.
- W4313256489 hasConceptScore W4313256489C86803240 @default.