Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256786> ?p ?o ?g. }
- W4313256786 abstract "Abstract Mountain snowpack is a critical freshwater reservoir that sustains ecosystems and provides water for hydropower, agriculture, and urban uses. Accurate basin‐scale snowpack estimates are essential for ecosystem and water resources management. Our ability to predict snowpack evolution is hampered by the low density of precipitation gauges in high mountain regions, as most precipitation gauges are installed in easily accessible areas, which are often below the snowline. These measurements are typically spatially interpolated to fill data gaps in high mountain areas, resulting in a range of gridded products with considerable differences. On the other hand, natural resources agencies rely on a few strategically placed snow pillows and snow courses to infer basin‐scale snow water equivalent (SWE). In the Kings River Basin, California, there is an opportunity to combine precipitation and snow pillow measurements to improve basin‐scale snowpack estimates. In this study, we blend precipitation gauge observations with snowpack measurements to force a spatially distributed, process‐based snowpack evolution model in order to improve basin‐scale precipitation and snowpack predictions. We test the blended precipitation (Blended scenario) against other gridded precipitation products, which are derived from precipitation gauges only (Gauge scenario) and the PRISM precipitation product (PRISM scenario). Our results show that the Blended scenario had improved snowpack predictions (NSE = 0.85) over the Gauge and PRISM scenarios (NSE = 0.37 and 0.81) when compared to observed SWE, which can be attributed to better representation of precipitation at high elevations. The Blended scenario was also the only scenario to produce sufficient surface water input (SWI) to account for the combined estimates of full natural flow and evapotranspiration in the basin. We also examine the model sensitivity to warming and discuss the impact of warming on SWE and SWI and implications for water management. The results underscore the need for improved snow observation networks at high elevations that can be used to improve the representation of precipitation patterns, which is critical for the hydrologic modelling of mountainous basins." @default.
- W4313256786 created "2023-01-06" @default.
- W4313256786 creator A5034122855 @default.
- W4313256786 creator A5035774146 @default.
- W4313256786 creator A5075287902 @default.
- W4313256786 creator A5078840616 @default.
- W4313256786 date "2023-01-01" @default.
- W4313256786 modified "2023-09-26" @default.
- W4313256786 title "Improving snow water equivalent simulations in an alpine basin by blending precipitation gauge and snow pillow measurements" @default.
- W4313256786 cites W145757166 @default.
- W4313256786 cites W1560807794 @default.
- W4313256786 cites W1826495698 @default.
- W4313256786 cites W1827826937 @default.
- W4313256786 cites W1877610056 @default.
- W4313256786 cites W1881425009 @default.
- W4313256786 cites W1896591085 @default.
- W4313256786 cites W1948837742 @default.
- W4313256786 cites W1966334841 @default.
- W4313256786 cites W1987392247 @default.
- W4313256786 cites W1990002344 @default.
- W4313256786 cites W1994616231 @default.
- W4313256786 cites W1999798822 @default.
- W4313256786 cites W2012529203 @default.
- W4313256786 cites W2014927728 @default.
- W4313256786 cites W2015414779 @default.
- W4313256786 cites W2027469749 @default.
- W4313256786 cites W2033595123 @default.
- W4313256786 cites W2034797768 @default.
- W4313256786 cites W2038103182 @default.
- W4313256786 cites W2043121437 @default.
- W4313256786 cites W2063305498 @default.
- W4313256786 cites W2066115419 @default.
- W4313256786 cites W2079261502 @default.
- W4313256786 cites W2083502381 @default.
- W4313256786 cites W2105773904 @default.
- W4313256786 cites W2105991219 @default.
- W4313256786 cites W2116864840 @default.
- W4313256786 cites W2127403333 @default.
- W4313256786 cites W2133774712 @default.
- W4313256786 cites W2136266031 @default.
- W4313256786 cites W2142416245 @default.
- W4313256786 cites W2150826936 @default.
- W4313256786 cites W2157173445 @default.
- W4313256786 cites W2158716451 @default.
- W4313256786 cites W2162380464 @default.
- W4313256786 cites W2167713723 @default.
- W4313256786 cites W2169754272 @default.
- W4313256786 cites W2174650319 @default.
- W4313256786 cites W2343593589 @default.
- W4313256786 cites W2346349701 @default.
- W4313256786 cites W2417067518 @default.
- W4313256786 cites W2509458264 @default.
- W4313256786 cites W2514718889 @default.
- W4313256786 cites W2526149777 @default.
- W4313256786 cites W2587306689 @default.
- W4313256786 cites W2593494947 @default.
- W4313256786 cites W2730268876 @default.
- W4313256786 cites W2731518851 @default.
- W4313256786 cites W2791711478 @default.
- W4313256786 cites W2883621157 @default.
- W4313256786 cites W2885109349 @default.
- W4313256786 cites W2895413567 @default.
- W4313256786 cites W2964528833 @default.
- W4313256786 cites W3075302338 @default.
- W4313256786 cites W3096039427 @default.
- W4313256786 cites W3156865462 @default.
- W4313256786 cites W4200407577 @default.
- W4313256786 doi "https://doi.org/10.1002/hyp.14796" @default.
- W4313256786 hasPublicationYear "2023" @default.
- W4313256786 type Work @default.
- W4313256786 citedByCount "1" @default.
- W4313256786 countsByYear W43132567862023 @default.
- W4313256786 crossrefType "journal-article" @default.
- W4313256786 hasAuthorship W4313256786A5034122855 @default.
- W4313256786 hasAuthorship W4313256786A5035774146 @default.
- W4313256786 hasAuthorship W4313256786A5075287902 @default.
- W4313256786 hasAuthorship W4313256786A5078840616 @default.
- W4313256786 hasBestOaLocation W43132567861 @default.
- W4313256786 hasConcept C107054158 @default.
- W4313256786 hasConcept C114793014 @default.
- W4313256786 hasConcept C127313418 @default.
- W4313256786 hasConcept C153294291 @default.
- W4313256786 hasConcept C187320778 @default.
- W4313256786 hasConcept C197046000 @default.
- W4313256786 hasConcept C205649164 @default.
- W4313256786 hasConcept C2778877292 @default.
- W4313256786 hasConcept C39432304 @default.
- W4313256786 hasConcept C64649846 @default.
- W4313256786 hasConcept C76886044 @default.
- W4313256786 hasConcept C91586092 @default.
- W4313256786 hasConceptScore W4313256786C107054158 @default.
- W4313256786 hasConceptScore W4313256786C114793014 @default.
- W4313256786 hasConceptScore W4313256786C127313418 @default.
- W4313256786 hasConceptScore W4313256786C153294291 @default.
- W4313256786 hasConceptScore W4313256786C187320778 @default.
- W4313256786 hasConceptScore W4313256786C197046000 @default.
- W4313256786 hasConceptScore W4313256786C205649164 @default.
- W4313256786 hasConceptScore W4313256786C2778877292 @default.
- W4313256786 hasConceptScore W4313256786C39432304 @default.
- W4313256786 hasConceptScore W4313256786C64649846 @default.