Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256789> ?p ?o ?g. }
- W4313256789 endingPage "105666" @default.
- W4313256789 startingPage "105666" @default.
- W4313256789 abstract "This article proposes a real-time implementation of distributed model predictive controllers to maximize the thermal energy generated by parabolic trough collector fields. For this control strategy, we consider that each loop of the solar collector field is individually managed by a controller, which can form coalition with other controllers to attain its local goals while contributing to the overall objective. The formation of coalitions is based on a market-based mechanism in which the heat transfer fluid is traded. To relieve the computational burden online, we propose a learning-based approach that approximates optimization problems so that the controller can be applied in real time. Finally, simulations in a 100-loop solar collector field are used to assess the coalitional strategy based on neural networks in comparison with the coalitional model predictive control. The results show that the coalitional strategy based on neural networks provides a reduction in computing time of up to 99.74% and a minimal reduction in performance compared to the coalitional model predictive controller used as the baseline." @default.
- W4313256789 created "2023-01-06" @default.
- W4313256789 creator A5040739905 @default.
- W4313256789 creator A5047222777 @default.
- W4313256789 creator A5052452234 @default.
- W4313256789 creator A5076251280 @default.
- W4313256789 creator A5089211717 @default.
- W4313256789 date "2023-02-01" @default.
- W4313256789 modified "2023-10-17" @default.
- W4313256789 title "A fast implementation of coalitional model predictive controllers based on machine learning: Application to solar power plants" @default.
- W4313256789 cites W1498436455 @default.
- W4313256789 cites W1965121957 @default.
- W4313256789 cites W2051812123 @default.
- W4313256789 cites W2052229978 @default.
- W4313256789 cites W2054318085 @default.
- W4313256789 cites W2070559453 @default.
- W4313256789 cites W2078384894 @default.
- W4313256789 cites W2087070363 @default.
- W4313256789 cites W2133318640 @default.
- W4313256789 cites W2138009073 @default.
- W4313256789 cites W2333393323 @default.
- W4313256789 cites W2525807339 @default.
- W4313256789 cites W2604855266 @default.
- W4313256789 cites W2739906565 @default.
- W4313256789 cites W2763133679 @default.
- W4313256789 cites W2775624740 @default.
- W4313256789 cites W2783147085 @default.
- W4313256789 cites W2792270834 @default.
- W4313256789 cites W2804029523 @default.
- W4313256789 cites W2805503300 @default.
- W4313256789 cites W2885452602 @default.
- W4313256789 cites W2897008866 @default.
- W4313256789 cites W2900139936 @default.
- W4313256789 cites W2904526301 @default.
- W4313256789 cites W2908009903 @default.
- W4313256789 cites W2910008053 @default.
- W4313256789 cites W2942688638 @default.
- W4313256789 cites W2943491685 @default.
- W4313256789 cites W3021807385 @default.
- W4313256789 cites W3031194307 @default.
- W4313256789 cites W3084459745 @default.
- W4313256789 cites W3086788843 @default.
- W4313256789 cites W3108431994 @default.
- W4313256789 cites W3110912407 @default.
- W4313256789 cites W3117177571 @default.
- W4313256789 cites W3127070120 @default.
- W4313256789 cites W3131552394 @default.
- W4313256789 cites W3151473751 @default.
- W4313256789 cites W3170557513 @default.
- W4313256789 cites W3192124319 @default.
- W4313256789 cites W3193788824 @default.
- W4313256789 cites W3196351275 @default.
- W4313256789 cites W3199263016 @default.
- W4313256789 cites W3203913683 @default.
- W4313256789 cites W3205144305 @default.
- W4313256789 cites W3207646706 @default.
- W4313256789 cites W4205501941 @default.
- W4313256789 cites W4205659253 @default.
- W4313256789 cites W4210710079 @default.
- W4313256789 cites W4211147054 @default.
- W4313256789 cites W4213375653 @default.
- W4313256789 cites W4285060570 @default.
- W4313256789 cites W4293100683 @default.
- W4313256789 doi "https://doi.org/10.1016/j.engappai.2022.105666" @default.
- W4313256789 hasPublicationYear "2023" @default.
- W4313256789 type Work @default.
- W4313256789 citedByCount "4" @default.
- W4313256789 countsByYear W43132567892023 @default.
- W4313256789 crossrefType "journal-article" @default.
- W4313256789 hasAuthorship W4313256789A5040739905 @default.
- W4313256789 hasAuthorship W4313256789A5047222777 @default.
- W4313256789 hasAuthorship W4313256789A5052452234 @default.
- W4313256789 hasAuthorship W4313256789A5076251280 @default.
- W4313256789 hasAuthorship W4313256789A5089211717 @default.
- W4313256789 hasBestOaLocation W43132567891 @default.
- W4313256789 hasConcept C111335779 @default.
- W4313256789 hasConcept C126255220 @default.
- W4313256789 hasConcept C154945302 @default.
- W4313256789 hasConcept C172205157 @default.
- W4313256789 hasConcept C18903297 @default.
- W4313256789 hasConcept C202444582 @default.
- W4313256789 hasConcept C203479927 @default.
- W4313256789 hasConcept C2524010 @default.
- W4313256789 hasConcept C2775924081 @default.
- W4313256789 hasConcept C2781249646 @default.
- W4313256789 hasConcept C33923547 @default.
- W4313256789 hasConcept C41008148 @default.
- W4313256789 hasConcept C47446073 @default.
- W4313256789 hasConcept C50644808 @default.
- W4313256789 hasConcept C541104983 @default.
- W4313256789 hasConcept C6557445 @default.
- W4313256789 hasConcept C86803240 @default.
- W4313256789 hasConcept C9652623 @default.
- W4313256789 hasConceptScore W4313256789C111335779 @default.
- W4313256789 hasConceptScore W4313256789C126255220 @default.
- W4313256789 hasConceptScore W4313256789C154945302 @default.
- W4313256789 hasConceptScore W4313256789C172205157 @default.
- W4313256789 hasConceptScore W4313256789C18903297 @default.