Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313256936> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313256936 endingPage "104527" @default.
- W4313256936 startingPage "104527" @default.
- W4313256936 abstract "Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images." @default.
- W4313256936 created "2023-01-06" @default.
- W4313256936 creator A5048635721 @default.
- W4313256936 creator A5074667071 @default.
- W4313256936 date "2023-04-01" @default.
- W4313256936 modified "2023-10-17" @default.
- W4313256936 title "Atrous convolution aided integrated framework for lung nodule segmentation and classification" @default.
- W4313256936 cites W1901129140 @default.
- W4313256936 cites W1903029394 @default.
- W4313256936 cites W2045883724 @default.
- W4313256936 cites W2112796928 @default.
- W4313256936 cites W2194775991 @default.
- W4313256936 cites W2412782625 @default.
- W4313256936 cites W2563705555 @default.
- W4313256936 cites W2618530766 @default.
- W4313256936 cites W2751646824 @default.
- W4313256936 cites W2888848380 @default.
- W4313256936 cites W2889646458 @default.
- W4313256936 cites W2892679192 @default.
- W4313256936 cites W2900047169 @default.
- W4313256936 cites W2909843210 @default.
- W4313256936 cites W2922342825 @default.
- W4313256936 cites W2957352479 @default.
- W4313256936 cites W2960671912 @default.
- W4313256936 cites W2962852641 @default.
- W4313256936 cites W2963153291 @default.
- W4313256936 cites W2963418739 @default.
- W4313256936 cites W2963583038 @default.
- W4313256936 cites W2963881378 @default.
- W4313256936 cites W2964209782 @default.
- W4313256936 cites W2997994114 @default.
- W4313256936 cites W3001603467 @default.
- W4313256936 cites W3010628628 @default.
- W4313256936 cites W3015853701 @default.
- W4313256936 cites W3024871967 @default.
- W4313256936 cites W3040240789 @default.
- W4313256936 cites W3044527051 @default.
- W4313256936 cites W3045605181 @default.
- W4313256936 cites W3094774173 @default.
- W4313256936 cites W3139747270 @default.
- W4313256936 cites W3198626962 @default.
- W4313256936 cites W4283271724 @default.
- W4313256936 doi "https://doi.org/10.1016/j.bspc.2022.104527" @default.
- W4313256936 hasPublicationYear "2023" @default.
- W4313256936 type Work @default.
- W4313256936 citedByCount "3" @default.
- W4313256936 countsByYear W43132569362023 @default.
- W4313256936 crossrefType "journal-article" @default.
- W4313256936 hasAuthorship W4313256936A5048635721 @default.
- W4313256936 hasAuthorship W4313256936A5074667071 @default.
- W4313256936 hasConcept C124504099 @default.
- W4313256936 hasConcept C126838900 @default.
- W4313256936 hasConcept C142724271 @default.
- W4313256936 hasConcept C151730666 @default.
- W4313256936 hasConcept C153180895 @default.
- W4313256936 hasConcept C154945302 @default.
- W4313256936 hasConcept C163892561 @default.
- W4313256936 hasConcept C203519979 @default.
- W4313256936 hasConcept C2776256026 @default.
- W4313256936 hasConcept C2776731575 @default.
- W4313256936 hasConcept C41008148 @default.
- W4313256936 hasConcept C71924100 @default.
- W4313256936 hasConcept C81363708 @default.
- W4313256936 hasConcept C86803240 @default.
- W4313256936 hasConcept C89600930 @default.
- W4313256936 hasConceptScore W4313256936C124504099 @default.
- W4313256936 hasConceptScore W4313256936C126838900 @default.
- W4313256936 hasConceptScore W4313256936C142724271 @default.
- W4313256936 hasConceptScore W4313256936C151730666 @default.
- W4313256936 hasConceptScore W4313256936C153180895 @default.
- W4313256936 hasConceptScore W4313256936C154945302 @default.
- W4313256936 hasConceptScore W4313256936C163892561 @default.
- W4313256936 hasConceptScore W4313256936C203519979 @default.
- W4313256936 hasConceptScore W4313256936C2776256026 @default.
- W4313256936 hasConceptScore W4313256936C2776731575 @default.
- W4313256936 hasConceptScore W4313256936C41008148 @default.
- W4313256936 hasConceptScore W4313256936C71924100 @default.
- W4313256936 hasConceptScore W4313256936C81363708 @default.
- W4313256936 hasConceptScore W4313256936C86803240 @default.
- W4313256936 hasConceptScore W4313256936C89600930 @default.
- W4313256936 hasLocation W43132569361 @default.
- W4313256936 hasOpenAccess W4313256936 @default.
- W4313256936 hasPrimaryLocation W43132569361 @default.
- W4313256936 hasRelatedWork W2630229246 @default.
- W4313256936 hasRelatedWork W2769435486 @default.
- W4313256936 hasRelatedWork W2897195263 @default.
- W4313256936 hasRelatedWork W2914580601 @default.
- W4313256936 hasRelatedWork W2969790209 @default.
- W4313256936 hasRelatedWork W3017840285 @default.
- W4313256936 hasRelatedWork W3020967059 @default.
- W4313256936 hasRelatedWork W3118494652 @default.
- W4313256936 hasRelatedWork W3152950745 @default.
- W4313256936 hasRelatedWork W4200528772 @default.
- W4313256936 hasVolume "82" @default.
- W4313256936 isParatext "false" @default.
- W4313256936 isRetracted "false" @default.
- W4313256936 workType "article" @default.