Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313257041> ?p ?o ?g. }
- W4313257041 abstract "Abstract Named entity recognition (NER) is an important task in the field of natural language processing, but it is more challenging in Chinese because of the lack of natural delimiters. The traditional character‐based Chinese NER model directly uses long short‐term memory (LSTM), gated recurrent units, and other sequence models to extract sentence‐level information from character sequences, resulting in the lack of word‐level information in the model. Therefore, a Chinese NER model called ChineseBERT‐CNNs‐BiLSTM‐CRF was proposed, which uses the ChineseBERT pretrained model as the embedding layer so that the vector representation of each Chinese character contained pinyin, glyph, and conventional character information. In addition, a CNN‐based neural network structure called CNNs was presented to extract word‐level information from character sequences and alleviate the problem of entity boundary recognition. BiLSTM was used to extract global features (i.e., sentence‐level information) and predict the corresponding labels of character sequences. Further, conditional random field (CRF) was employed to impose certain rules on the prediction of BiLSTM to enhance the recognition effect of the model. The experimental results revealed that the F1 values of the model on MSRA, people's Daily, and Weibo datasets reached 95.76, 96.61, and 70.00%, respectively, highlighting the effectiveness of the model." @default.
- W4313257041 created "2023-01-06" @default.
- W4313257041 creator A5006773938 @default.
- W4313257041 creator A5010052630 @default.
- W4313257041 creator A5017261495 @default.
- W4313257041 creator A5072436255 @default.
- W4313257041 date "2022-12-26" @default.
- W4313257041 modified "2023-09-26" @default.
- W4313257041 title "Deep adaptation of <scp>CNN</scp> in Chinese named entity recognition" @default.
- W4313257041 cites W1607093392 @default.
- W4313257041 cites W1832693441 @default.
- W4313257041 cites W2120615054 @default.
- W4313257041 cites W2123512824 @default.
- W4313257041 cites W2250473257 @default.
- W4313257041 cites W2250539671 @default.
- W4313257041 cites W2250709962 @default.
- W4313257041 cites W2251189452 @default.
- W4313257041 cites W2952826391 @default.
- W4313257041 cites W2953356739 @default.
- W4313257041 cites W2962904552 @default.
- W4313257041 cites W2962946486 @default.
- W4313257041 cites W2963355447 @default.
- W4313257041 cites W2964319599 @default.
- W4313257041 cites W2971039193 @default.
- W4313257041 cites W2997200074 @default.
- W4313257041 cites W3003265726 @default.
- W4313257041 cites W3017105460 @default.
- W4313257041 cites W3022036890 @default.
- W4313257041 cites W3032553678 @default.
- W4313257041 cites W3034379414 @default.
- W4313257041 cites W3035375600 @default.
- W4313257041 cites W3035625205 @default.
- W4313257041 cites W3035642486 @default.
- W4313257041 cites W3098065087 @default.
- W4313257041 cites W3122723700 @default.
- W4313257041 cites W3156333129 @default.
- W4313257041 cites W3164517088 @default.
- W4313257041 cites W3174396451 @default.
- W4313257041 cites W3176971429 @default.
- W4313257041 cites W3186783455 @default.
- W4313257041 cites W3190271517 @default.
- W4313257041 cites W3198253827 @default.
- W4313257041 cites W4224988036 @default.
- W4313257041 cites W4229810782 @default.
- W4313257041 cites W4285106586 @default.
- W4313257041 doi "https://doi.org/10.1002/eng2.12614" @default.
- W4313257041 hasPublicationYear "2022" @default.
- W4313257041 type Work @default.
- W4313257041 citedByCount "0" @default.
- W4313257041 crossrefType "journal-article" @default.
- W4313257041 hasAuthorship W4313257041A5006773938 @default.
- W4313257041 hasAuthorship W4313257041A5010052630 @default.
- W4313257041 hasAuthorship W4313257041A5017261495 @default.
- W4313257041 hasAuthorship W4313257041A5072436255 @default.
- W4313257041 hasBestOaLocation W43132570411 @default.
- W4313257041 hasConcept C119857082 @default.
- W4313257041 hasConcept C138885662 @default.
- W4313257041 hasConcept C142816647 @default.
- W4313257041 hasConcept C147168706 @default.
- W4313257041 hasConcept C152565575 @default.
- W4313257041 hasConcept C154945302 @default.
- W4313257041 hasConcept C162324750 @default.
- W4313257041 hasConcept C17744445 @default.
- W4313257041 hasConcept C187736073 @default.
- W4313257041 hasConcept C199539241 @default.
- W4313257041 hasConcept C204321447 @default.
- W4313257041 hasConcept C2524010 @default.
- W4313257041 hasConcept C2776359362 @default.
- W4313257041 hasConcept C2777530160 @default.
- W4313257041 hasConcept C2779135771 @default.
- W4313257041 hasConcept C2780451532 @default.
- W4313257041 hasConcept C2780861071 @default.
- W4313257041 hasConcept C2781051154 @default.
- W4313257041 hasConcept C28490314 @default.
- W4313257041 hasConcept C33923547 @default.
- W4313257041 hasConcept C35639132 @default.
- W4313257041 hasConcept C36464697 @default.
- W4313257041 hasConcept C41008148 @default.
- W4313257041 hasConcept C41895202 @default.
- W4313257041 hasConcept C50644808 @default.
- W4313257041 hasConcept C774472 @default.
- W4313257041 hasConcept C81363708 @default.
- W4313257041 hasConcept C90805587 @default.
- W4313257041 hasConcept C94625758 @default.
- W4313257041 hasConceptScore W4313257041C119857082 @default.
- W4313257041 hasConceptScore W4313257041C138885662 @default.
- W4313257041 hasConceptScore W4313257041C142816647 @default.
- W4313257041 hasConceptScore W4313257041C147168706 @default.
- W4313257041 hasConceptScore W4313257041C152565575 @default.
- W4313257041 hasConceptScore W4313257041C154945302 @default.
- W4313257041 hasConceptScore W4313257041C162324750 @default.
- W4313257041 hasConceptScore W4313257041C17744445 @default.
- W4313257041 hasConceptScore W4313257041C187736073 @default.
- W4313257041 hasConceptScore W4313257041C199539241 @default.
- W4313257041 hasConceptScore W4313257041C204321447 @default.
- W4313257041 hasConceptScore W4313257041C2524010 @default.
- W4313257041 hasConceptScore W4313257041C2776359362 @default.
- W4313257041 hasConceptScore W4313257041C2777530160 @default.
- W4313257041 hasConceptScore W4313257041C2779135771 @default.
- W4313257041 hasConceptScore W4313257041C2780451532 @default.