Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313259443> ?p ?o ?g. }
- W4313259443 endingPage "225" @default.
- W4313259443 startingPage "225" @default.
- W4313259443 abstract "In the contemporary world, emotion detection of humans is procuring huge scope in extensive dimensions such as bio-metric security, HCI (human–computer interaction), etc. Such emotions could be detected from various means, such as information integration from facial expressions, gestures, speech, etc. Though such physical depictions contribute to emotion detection, EEG (electroencephalogram) signals have gained significant focus in emotion detection due to their sensitivity to alterations in emotional states. Hence, such signals could explore significant emotional state features. However, manual detection from EEG signals is a time-consuming process. With the evolution of artificial intelligence, researchers have attempted to use different data mining algorithms for emotion detection from EEG signals. Nevertheless, they have shown ineffective accuracy. To resolve this, the present study proposes a DNA-RCNN (Deep Normalized Attention-based Residual Convolutional Neural Network) to extract the appropriate features based on the discriminative representation of features. The proposed NN also explores alluring features with the proposed attention modules leading to consistent performance. Finally, classification is performed by the proposed M-RF (modified-random forest) with an empirical loss function. In this process, the learning weights on the data subset alleviate loss amongst the predicted value and ground truth, which assists in precise classification. Performance and comparative analysis are considered to explore the better performance of the proposed system in detecting emotions from EEG signals that confirms its effectiveness." @default.
- W4313259443 created "2023-01-06" @default.
- W4313259443 creator A5000028489 @default.
- W4313259443 date "2022-12-26" @default.
- W4313259443 modified "2023-10-01" @default.
- W4313259443 title "Emotion Detection Using Deep Normalized Attention-Based Neural Network and Modified-Random Forest" @default.
- W4313259443 cites W2792157494 @default.
- W4313259443 cites W2800893827 @default.
- W4313259443 cites W2886438783 @default.
- W4313259443 cites W2899177176 @default.
- W4313259443 cites W2900338279 @default.
- W4313259443 cites W2934123712 @default.
- W4313259443 cites W2952286992 @default.
- W4313259443 cites W2964269453 @default.
- W4313259443 cites W2982299617 @default.
- W4313259443 cites W2988016651 @default.
- W4313259443 cites W3014215018 @default.
- W4313259443 cites W3025334394 @default.
- W4313259443 cites W3027581678 @default.
- W4313259443 cites W3032135501 @default.
- W4313259443 cites W3098014865 @default.
- W4313259443 cites W3108087271 @default.
- W4313259443 cites W3108564553 @default.
- W4313259443 cites W3110327404 @default.
- W4313259443 cites W3118441062 @default.
- W4313259443 cites W3119640139 @default.
- W4313259443 cites W3120598210 @default.
- W4313259443 cites W3148231529 @default.
- W4313259443 cites W3153380589 @default.
- W4313259443 cites W3154256352 @default.
- W4313259443 cites W3156356077 @default.
- W4313259443 cites W3169874873 @default.
- W4313259443 cites W3202752098 @default.
- W4313259443 cites W4220842428 @default.
- W4313259443 cites W4289110083 @default.
- W4313259443 doi "https://doi.org/10.3390/s23010225" @default.
- W4313259443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616823" @default.
- W4313259443 hasPublicationYear "2022" @default.
- W4313259443 type Work @default.
- W4313259443 citedByCount "6" @default.
- W4313259443 countsByYear W43132594432023 @default.
- W4313259443 crossrefType "journal-article" @default.
- W4313259443 hasAuthorship W4313259443A5000028489 @default.
- W4313259443 hasBestOaLocation W43132594431 @default.
- W4313259443 hasConcept C108583219 @default.
- W4313259443 hasConcept C111919701 @default.
- W4313259443 hasConcept C118552586 @default.
- W4313259443 hasConcept C119857082 @default.
- W4313259443 hasConcept C120665830 @default.
- W4313259443 hasConcept C121332964 @default.
- W4313259443 hasConcept C127413603 @default.
- W4313259443 hasConcept C153180895 @default.
- W4313259443 hasConcept C154945302 @default.
- W4313259443 hasConcept C15744967 @default.
- W4313259443 hasConcept C169258074 @default.
- W4313259443 hasConcept C176217482 @default.
- W4313259443 hasConcept C192209626 @default.
- W4313259443 hasConcept C195704467 @default.
- W4313259443 hasConcept C206310091 @default.
- W4313259443 hasConcept C21547014 @default.
- W4313259443 hasConcept C28490314 @default.
- W4313259443 hasConcept C41008148 @default.
- W4313259443 hasConcept C522805319 @default.
- W4313259443 hasConcept C81363708 @default.
- W4313259443 hasConcept C97931131 @default.
- W4313259443 hasConcept C98045186 @default.
- W4313259443 hasConceptScore W4313259443C108583219 @default.
- W4313259443 hasConceptScore W4313259443C111919701 @default.
- W4313259443 hasConceptScore W4313259443C118552586 @default.
- W4313259443 hasConceptScore W4313259443C119857082 @default.
- W4313259443 hasConceptScore W4313259443C120665830 @default.
- W4313259443 hasConceptScore W4313259443C121332964 @default.
- W4313259443 hasConceptScore W4313259443C127413603 @default.
- W4313259443 hasConceptScore W4313259443C153180895 @default.
- W4313259443 hasConceptScore W4313259443C154945302 @default.
- W4313259443 hasConceptScore W4313259443C15744967 @default.
- W4313259443 hasConceptScore W4313259443C169258074 @default.
- W4313259443 hasConceptScore W4313259443C176217482 @default.
- W4313259443 hasConceptScore W4313259443C192209626 @default.
- W4313259443 hasConceptScore W4313259443C195704467 @default.
- W4313259443 hasConceptScore W4313259443C206310091 @default.
- W4313259443 hasConceptScore W4313259443C21547014 @default.
- W4313259443 hasConceptScore W4313259443C28490314 @default.
- W4313259443 hasConceptScore W4313259443C41008148 @default.
- W4313259443 hasConceptScore W4313259443C522805319 @default.
- W4313259443 hasConceptScore W4313259443C81363708 @default.
- W4313259443 hasConceptScore W4313259443C97931131 @default.
- W4313259443 hasConceptScore W4313259443C98045186 @default.
- W4313259443 hasIssue "1" @default.
- W4313259443 hasLocation W43132594431 @default.
- W4313259443 hasLocation W43132594432 @default.
- W4313259443 hasLocation W43132594433 @default.
- W4313259443 hasOpenAccess W4313259443 @default.
- W4313259443 hasPrimaryLocation W43132594431 @default.
- W4313259443 hasRelatedWork W2738221750 @default.
- W4313259443 hasRelatedWork W2914959431 @default.
- W4313259443 hasRelatedWork W2964383635 @default.
- W4313259443 hasRelatedWork W3001589575 @default.