Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313259612> ?p ?o ?g. }
- W4313259612 endingPage "402" @default.
- W4313259612 startingPage "402" @default.
- W4313259612 abstract "Water quality index (WQI) is the primary method applied to characterize water quality in the world. The current study employed the statistical analysis and multilayer perceptron (MLP) approaches for predicting groundwater quality in the Ghiss-Nekkor aquifer, northeast of Al Hoceima, Morocco. Fifty sampled groundwater were identified and analyzed for major anions and cations throughout May 2019. Several physicochemical parameters of all the samples were identified in this investigation, such as TDS, pH, EC, Na, K, Ca, Mg, HCO3, NO3, Br, SO4, and Cl. The entropy-weighted groundwater quality index (EWQI) was calculated from these parameters. The WQI procedure determined the suitability of groundwater for consumption. The WQI value varied from 90.98 to 337.28. The EC, TDS, WQI, and Cl− spatial distribution showed that EC and Cl− are associated with poor groundwater quality. A single sample (W16) represented unsuitable water for drinking purposes and offered a WQI value of 337.28, indicating poor drinking quality due to seawater intrusion, overexploitation, and harsh weather conditions. The majority of the values obtained for the parameters exceeded the recommended limit of the World Health Organization (WHO)’s guidelines for consumption. The findings show that using parameters is a straightforward method for predicting water quality indexes with sufficient and suitable precision. The MLP model shows good predictive performances in terms of the coefficient of determination R2, mean absolute error (MAE), and root-mean-square error (RMSE) with values of 0.9885, 5.8031, and 4.7211, respectively. The ANN approach was applied to develop a model that can accurately predict WQI utilizing mineralization, TH, NO3, and NO2 as inputs. The MAE for the model’s performance was calculated to be 4.72. A Bland–Altman test was used to validate that the model is suitable. Following the test, it was determined that the model is appropriate for predicting WQI, with an error of just 0.1%." @default.
- W4313259612 created "2023-01-06" @default.
- W4313259612 creator A5001227670 @default.
- W4313259612 creator A5009606718 @default.
- W4313259612 creator A5011777270 @default.
- W4313259612 creator A5018020024 @default.
- W4313259612 creator A5021414814 @default.
- W4313259612 creator A5030665683 @default.
- W4313259612 creator A5043218277 @default.
- W4313259612 creator A5051930046 @default.
- W4313259612 creator A5052160711 @default.
- W4313259612 creator A5052853468 @default.
- W4313259612 creator A5069189531 @default.
- W4313259612 creator A5070735851 @default.
- W4313259612 creator A5077084526 @default.
- W4313259612 creator A5077879929 @default.
- W4313259612 date "2022-12-26" @default.
- W4313259612 modified "2023-09-30" @default.
- W4313259612 title "Assessment and Prediction of the Water Quality Index for the Groundwater of the Ghiss-Nekkor (Al Hoceima, Northeastern Morocco)" @default.
- W4313259612 cites W1551208174 @default.
- W4313259612 cites W1806260865 @default.
- W4313259612 cites W1965365885 @default.
- W4313259612 cites W1968506643 @default.
- W4313259612 cites W1974230032 @default.
- W4313259612 cites W1982836372 @default.
- W4313259612 cites W1994139156 @default.
- W4313259612 cites W1998442441 @default.
- W4313259612 cites W2001676017 @default.
- W4313259612 cites W2005600721 @default.
- W4313259612 cites W2009636568 @default.
- W4313259612 cites W2020278664 @default.
- W4313259612 cites W2020962290 @default.
- W4313259612 cites W2029372933 @default.
- W4313259612 cites W2060063654 @default.
- W4313259612 cites W2063678646 @default.
- W4313259612 cites W2077538380 @default.
- W4313259612 cites W2079074402 @default.
- W4313259612 cites W2105455980 @default.
- W4313259612 cites W2166092530 @default.
- W4313259612 cites W2212794411 @default.
- W4313259612 cites W2223261853 @default.
- W4313259612 cites W2417805980 @default.
- W4313259612 cites W2539195151 @default.
- W4313259612 cites W2608985946 @default.
- W4313259612 cites W2613889512 @default.
- W4313259612 cites W2741010401 @default.
- W4313259612 cites W2748152554 @default.
- W4313259612 cites W2756309847 @default.
- W4313259612 cites W2770274554 @default.
- W4313259612 cites W2777213851 @default.
- W4313259612 cites W2787894218 @default.
- W4313259612 cites W2794428822 @default.
- W4313259612 cites W2801969138 @default.
- W4313259612 cites W2908729607 @default.
- W4313259612 cites W2920455956 @default.
- W4313259612 cites W2945305628 @default.
- W4313259612 cites W2992858460 @default.
- W4313259612 cites W2994632932 @default.
- W4313259612 cites W2999185982 @default.
- W4313259612 cites W3015628289 @default.
- W4313259612 cites W3036335202 @default.
- W4313259612 cites W3080500007 @default.
- W4313259612 cites W3090355065 @default.
- W4313259612 cites W3120288774 @default.
- W4313259612 cites W3135811125 @default.
- W4313259612 cites W3142754746 @default.
- W4313259612 cites W3196416709 @default.
- W4313259612 cites W3214981524 @default.
- W4313259612 cites W4210271078 @default.
- W4313259612 cites W4212930808 @default.
- W4313259612 cites W4291183954 @default.
- W4313259612 cites W4294233836 @default.
- W4313259612 cites W4307630699 @default.
- W4313259612 cites W4313003771 @default.
- W4313259612 doi "https://doi.org/10.3390/su15010402" @default.
- W4313259612 hasPublicationYear "2022" @default.
- W4313259612 type Work @default.
- W4313259612 citedByCount "7" @default.
- W4313259612 countsByYear W43132596122023 @default.
- W4313259612 crossrefType "journal-article" @default.
- W4313259612 hasAuthorship W4313259612A5001227670 @default.
- W4313259612 hasAuthorship W4313259612A5009606718 @default.
- W4313259612 hasAuthorship W4313259612A5011777270 @default.
- W4313259612 hasAuthorship W4313259612A5018020024 @default.
- W4313259612 hasAuthorship W4313259612A5021414814 @default.
- W4313259612 hasAuthorship W4313259612A5030665683 @default.
- W4313259612 hasAuthorship W4313259612A5043218277 @default.
- W4313259612 hasAuthorship W4313259612A5051930046 @default.
- W4313259612 hasAuthorship W4313259612A5052160711 @default.
- W4313259612 hasAuthorship W4313259612A5052853468 @default.
- W4313259612 hasAuthorship W4313259612A5069189531 @default.
- W4313259612 hasAuthorship W4313259612A5070735851 @default.
- W4313259612 hasAuthorship W4313259612A5077084526 @default.
- W4313259612 hasAuthorship W4313259612A5077879929 @default.
- W4313259612 hasBestOaLocation W43132596121 @default.
- W4313259612 hasConcept C105795698 @default.
- W4313259612 hasConcept C127313418 @default.
- W4313259612 hasConcept C128990827 @default.