Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313259654> ?p ?o ?g. }
- W4313259654 endingPage "211" @default.
- W4313259654 startingPage "211" @default.
- W4313259654 abstract "The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge amount of data, which is scarcely available in industry. This work shows that convolutional networks pre-trained for audio classification already contain knowledge for classifying bearing vibrations, since both tasks share the need to extract features from spectrograms. Knowledge transfer is realized through transfer learning to identify localized defects in rolling element bearings. This technique provides a tool to transfer the knowledge embedded in neural networks pre-trained for fulfilling similar tasks to diagnostic scenarios, significantly limiting the amount of data needed for fine-tuning. The VGGish model was fine-tuned for the specific diagnostic task by handling vibration samples. Data were extracted from the test bench for medium-size bearings specially set up in the mechanical engineering laboratories of the Politecnico di Torino. The experiment involved three damage classes. Results show that the model pre-trained using sound spectrograms can be successfully employed for classifying the bearing state through vibration spectrograms. The effectiveness of the model is assessed through comparisons with the existing literature." @default.
- W4313259654 created "2023-01-06" @default.
- W4313259654 creator A5014594801 @default.
- W4313259654 date "2022-12-25" @default.
- W4313259654 modified "2023-10-18" @default.
- W4313259654 title "Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification" @default.
- W4313259654 cites W1964511482 @default.
- W4313259654 cites W1974543974 @default.
- W4313259654 cites W1974570556 @default.
- W4313259654 cites W2019505419 @default.
- W4313259654 cites W2023829352 @default.
- W4313259654 cites W2046674752 @default.
- W4313259654 cites W2064474534 @default.
- W4313259654 cites W2067802406 @default.
- W4313259654 cites W2070803528 @default.
- W4313259654 cites W2093849451 @default.
- W4313259654 cites W2103869314 @default.
- W4313259654 cites W2107074288 @default.
- W4313259654 cites W2108598243 @default.
- W4313259654 cites W2165698076 @default.
- W4313259654 cites W243674440 @default.
- W4313259654 cites W2491643545 @default.
- W4313259654 cites W2493697924 @default.
- W4313259654 cites W2526050071 @default.
- W4313259654 cites W2593116425 @default.
- W4313259654 cites W2731372149 @default.
- W4313259654 cites W2768753204 @default.
- W4313259654 cites W2781219304 @default.
- W4313259654 cites W2791694051 @default.
- W4313259654 cites W2798149494 @default.
- W4313259654 cites W2801457104 @default.
- W4313259654 cites W2803978172 @default.
- W4313259654 cites W2810292802 @default.
- W4313259654 cites W2887782657 @default.
- W4313259654 cites W2891319189 @default.
- W4313259654 cites W2898375427 @default.
- W4313259654 cites W2899318073 @default.
- W4313259654 cites W2899718989 @default.
- W4313259654 cites W2910881901 @default.
- W4313259654 cites W2914345141 @default.
- W4313259654 cites W2943439651 @default.
- W4313259654 cites W2962956752 @default.
- W4313259654 cites W2970444935 @default.
- W4313259654 cites W2997783278 @default.
- W4313259654 cites W2998475302 @default.
- W4313259654 cites W2998506103 @default.
- W4313259654 cites W3025981493 @default.
- W4313259654 cites W3105404890 @default.
- W4313259654 cites W3112712555 @default.
- W4313259654 cites W3135412774 @default.
- W4313259654 cites W3173360689 @default.
- W4313259654 cites W3181850403 @default.
- W4313259654 cites W3216007425 @default.
- W4313259654 cites W4200039664 @default.
- W4313259654 cites W4200322140 @default.
- W4313259654 cites W4205497758 @default.
- W4313259654 cites W4235594362 @default.
- W4313259654 cites W4237523859 @default.
- W4313259654 cites W427289305 @default.
- W4313259654 cites W4283156489 @default.
- W4313259654 cites W4289526362 @default.
- W4313259654 cites W4295088410 @default.
- W4313259654 doi "https://doi.org/10.3390/s23010211" @default.
- W4313259654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616809" @default.
- W4313259654 hasPublicationYear "2022" @default.
- W4313259654 type Work @default.
- W4313259654 citedByCount "3" @default.
- W4313259654 countsByYear W43132596542023 @default.
- W4313259654 crossrefType "journal-article" @default.
- W4313259654 hasAuthorship W4313259654A5014594801 @default.
- W4313259654 hasBestOaLocation W43132596541 @default.
- W4313259654 hasConcept C119857082 @default.
- W4313259654 hasConcept C121332964 @default.
- W4313259654 hasConcept C127413603 @default.
- W4313259654 hasConcept C150899416 @default.
- W4313259654 hasConcept C153180895 @default.
- W4313259654 hasConcept C154945302 @default.
- W4313259654 hasConcept C198394728 @default.
- W4313259654 hasConcept C199978012 @default.
- W4313259654 hasConcept C24890656 @default.
- W4313259654 hasConcept C28490314 @default.
- W4313259654 hasConcept C41008148 @default.
- W4313259654 hasConcept C45273575 @default.
- W4313259654 hasConcept C50644808 @default.
- W4313259654 hasConcept C81363708 @default.
- W4313259654 hasConceptScore W4313259654C119857082 @default.
- W4313259654 hasConceptScore W4313259654C121332964 @default.
- W4313259654 hasConceptScore W4313259654C127413603 @default.
- W4313259654 hasConceptScore W4313259654C150899416 @default.
- W4313259654 hasConceptScore W4313259654C153180895 @default.
- W4313259654 hasConceptScore W4313259654C154945302 @default.
- W4313259654 hasConceptScore W4313259654C198394728 @default.
- W4313259654 hasConceptScore W4313259654C199978012 @default.
- W4313259654 hasConceptScore W4313259654C24890656 @default.
- W4313259654 hasConceptScore W4313259654C28490314 @default.
- W4313259654 hasConceptScore W4313259654C41008148 @default.
- W4313259654 hasConceptScore W4313259654C45273575 @default.
- W4313259654 hasConceptScore W4313259654C50644808 @default.