Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313259749> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313259749 endingPage "164" @default.
- W4313259749 startingPage "164" @default.
- W4313259749 abstract "In the presented study, data on the size and structure of cattle herds in Wielkopolskie, Podlaskie, and Mazowieckie voivodeships in 2019 were analyzed and subjected to modelling with the use of artificial intelligence, namely artificial neural networks (ANNs). The potential amount of biogas (m3) from cattle manure and slurry for the analyzed provinces was as follows: for the Mazowieckie Voivodeship, 800,654,186 m3; for the Podlaskie voivodeship, 662,655,274 m3; and for the Wielkopolskie voivodeship, 657,571,373 m3. Neural modelling was applied to find the relationship between the structure of the herds and the amount of generated slurry and manure (biomethane potential), as well as to indicate the most important animal types participating in biogas production. In each of the analyzed cases, the three-layer MLP perceptron with a single hidden layer proved to be the most optimal network structure. Sensitivity analysis of the generated models concerning herd structure showed a significant contribution of dairy cows to the methanogenic potential for both slurry and manure. The amount of slurry produced in the Mazowieckie and Wielkopolskie voivodeships was influenced in turn by heifers (both 6-12 and 12-18 months old) and bulls 12-24 months old, and in the Podlaskie voivodeship by calves and heifers 6-12 months old. As for manure, in addition to cows, bulls 12-24 months old and heifers 12-18 represented the main factor for Mazowieckie and Wielkopolskie voivodeships, and heifers (both 6-12 and 12-18 months old) for Podlaskie voivodeship." @default.
- W4313259749 created "2023-01-06" @default.
- W4313259749 creator A5009495377 @default.
- W4313259749 creator A5011492030 @default.
- W4313259749 creator A5028283891 @default.
- W4313259749 creator A5061570085 @default.
- W4313259749 date "2022-12-23" @default.
- W4313259749 modified "2023-09-26" @default.
- W4313259749 title "Neural Modelling in the Exploration of the Biomethane Potential from Cattle Manure: A Case Study on Herds Structure from Wielkopolskie, Podlaskie, and Mazowieckie Voivodeships in Poland" @default.
- W4313259749 cites W2042071012 @default.
- W4313259749 cites W2561743940 @default.
- W4313259749 cites W2752532721 @default.
- W4313259749 cites W2805254094 @default.
- W4313259749 cites W2909889498 @default.
- W4313259749 cites W3003543471 @default.
- W4313259749 cites W3010616240 @default.
- W4313259749 cites W3043520264 @default.
- W4313259749 cites W3082736359 @default.
- W4313259749 cites W3095278500 @default.
- W4313259749 cites W3098319161 @default.
- W4313259749 cites W3108776884 @default.
- W4313259749 cites W3128675599 @default.
- W4313259749 cites W3135461194 @default.
- W4313259749 cites W3198864564 @default.
- W4313259749 cites W3208952543 @default.
- W4313259749 cites W3216248147 @default.
- W4313259749 cites W4225145962 @default.
- W4313259749 cites W4285792539 @default.
- W4313259749 cites W3200569231 @default.
- W4313259749 doi "https://doi.org/10.3390/s23010164" @default.
- W4313259749 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616762" @default.
- W4313259749 hasPublicationYear "2022" @default.
- W4313259749 type Work @default.
- W4313259749 citedByCount "2" @default.
- W4313259749 countsByYear W43132597492023 @default.
- W4313259749 crossrefType "journal-article" @default.
- W4313259749 hasAuthorship W4313259749A5009495377 @default.
- W4313259749 hasAuthorship W4313259749A5011492030 @default.
- W4313259749 hasAuthorship W4313259749A5028283891 @default.
- W4313259749 hasAuthorship W4313259749A5061570085 @default.
- W4313259749 hasBestOaLocation W43132597491 @default.
- W4313259749 hasConcept C140793950 @default.
- W4313259749 hasConcept C18903297 @default.
- W4313259749 hasConcept C194775826 @default.
- W4313259749 hasConcept C37621935 @default.
- W4313259749 hasConcept C38304854 @default.
- W4313259749 hasConcept C39432304 @default.
- W4313259749 hasConcept C6557445 @default.
- W4313259749 hasConcept C75212476 @default.
- W4313259749 hasConcept C86803240 @default.
- W4313259749 hasConcept C87717796 @default.
- W4313259749 hasConcept C94293008 @default.
- W4313259749 hasConceptScore W4313259749C140793950 @default.
- W4313259749 hasConceptScore W4313259749C18903297 @default.
- W4313259749 hasConceptScore W4313259749C194775826 @default.
- W4313259749 hasConceptScore W4313259749C37621935 @default.
- W4313259749 hasConceptScore W4313259749C38304854 @default.
- W4313259749 hasConceptScore W4313259749C39432304 @default.
- W4313259749 hasConceptScore W4313259749C6557445 @default.
- W4313259749 hasConceptScore W4313259749C75212476 @default.
- W4313259749 hasConceptScore W4313259749C86803240 @default.
- W4313259749 hasConceptScore W4313259749C87717796 @default.
- W4313259749 hasConceptScore W4313259749C94293008 @default.
- W4313259749 hasIssue "1" @default.
- W4313259749 hasLocation W43132597491 @default.
- W4313259749 hasLocation W43132597492 @default.
- W4313259749 hasLocation W43132597493 @default.
- W4313259749 hasLocation W43132597494 @default.
- W4313259749 hasOpenAccess W4313259749 @default.
- W4313259749 hasPrimaryLocation W43132597491 @default.
- W4313259749 hasRelatedWork W2019900402 @default.
- W4313259749 hasRelatedWork W2061883182 @default.
- W4313259749 hasRelatedWork W2075916452 @default.
- W4313259749 hasRelatedWork W2144553069 @default.
- W4313259749 hasRelatedWork W2358610170 @default.
- W4313259749 hasRelatedWork W2381137429 @default.
- W4313259749 hasRelatedWork W2392402662 @default.
- W4313259749 hasRelatedWork W3003287732 @default.
- W4313259749 hasRelatedWork W4283317565 @default.
- W4313259749 hasRelatedWork W4285144813 @default.
- W4313259749 hasVolume "23" @default.
- W4313259749 isParatext "false" @default.
- W4313259749 isRetracted "false" @default.
- W4313259749 workType "article" @default.