Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313260057> ?p ?o ?g. }
- W4313260057 endingPage "44" @default.
- W4313260057 startingPage "44" @default.
- W4313260057 abstract "The long-term demand forecast for annual national electricity and energy consumption plays a vital role in future strategic planning, power system installation programming, energy investment planning, and next-generation unit construction. Three machine learning algorithms of BP-NN, MLR, and LS-SVM were chosen for training forecasting models, with the data on population, GDP, mean temperature, sunshine, rainfall, and frost days in 1993–2019 serving as the input variables. The total data were divided by 70% into the training set (1993–2011) and 30% into the test set (2012–2019), in chronological order. RMSE, MAPE, and MaxError were adopted as the performance criteria. The statistical results show that the gross population of the UK increases year by year from 1993 to 2020. The GDP generally increases before 2007 but has a decline, and then varies with a large amplitude afterward. The electricity and energy consumption of the UK generally increase from 1993 and reach a peak around 2005. Afterward, a decline occurs basically year by year until 2019. The simulation results reveal that all three models predict well on the training set but have some overestimation on the test set. The LS-SVM model has the best forecasting performance among the three models on the training set. The results show that it is feasible to use machine learning algorithms to predict the future electricity and energy consumption of a country based on past economic and livelihood data. In this way, economic decision-makers can rely on the predicted values to make a well-founded layout for future energy construction and investment to avoid waste or a shortage of resources." @default.
- W4313260057 created "2023-01-06" @default.
- W4313260057 creator A5013630392 @default.
- W4313260057 creator A5063319286 @default.
- W4313260057 date "2022-12-25" @default.
- W4313260057 modified "2023-10-05" @default.
- W4313260057 title "Annual Electricity and Energy Consumption Forecasting for the UK Based on Back Propagation Neural Network, Multiple Linear Regression, and Least Square Support Vector Machine" @default.
- W4313260057 cites W1979817014 @default.
- W4313260057 cites W1997276660 @default.
- W4313260057 cites W2003955416 @default.
- W4313260057 cites W2008750647 @default.
- W4313260057 cites W2032654523 @default.
- W4313260057 cites W2033885641 @default.
- W4313260057 cites W2041387425 @default.
- W4313260057 cites W2046933993 @default.
- W4313260057 cites W2074993972 @default.
- W4313260057 cites W2221703650 @default.
- W4313260057 cites W2415690642 @default.
- W4313260057 cites W2567511014 @default.
- W4313260057 cites W2601096366 @default.
- W4313260057 cites W2735045459 @default.
- W4313260057 cites W2750292148 @default.
- W4313260057 cites W2759669842 @default.
- W4313260057 cites W2802770308 @default.
- W4313260057 cites W2890886120 @default.
- W4313260057 cites W2936287033 @default.
- W4313260057 cites W2938669551 @default.
- W4313260057 cites W2947654534 @default.
- W4313260057 cites W2966130868 @default.
- W4313260057 cites W3121387173 @default.
- W4313260057 cites W3125531171 @default.
- W4313260057 cites W3134713870 @default.
- W4313260057 cites W3212774462 @default.
- W4313260057 doi "https://doi.org/10.3390/pr11010044" @default.
- W4313260057 hasPublicationYear "2022" @default.
- W4313260057 type Work @default.
- W4313260057 citedByCount "2" @default.
- W4313260057 countsByYear W43132600572023 @default.
- W4313260057 crossrefType "journal-article" @default.
- W4313260057 hasAuthorship W4313260057A5013630392 @default.
- W4313260057 hasAuthorship W4313260057A5063319286 @default.
- W4313260057 hasBestOaLocation W43132600571 @default.
- W4313260057 hasConcept C105795698 @default.
- W4313260057 hasConcept C119599485 @default.
- W4313260057 hasConcept C119857082 @default.
- W4313260057 hasConcept C12267149 @default.
- W4313260057 hasConcept C127413603 @default.
- W4313260057 hasConcept C139945424 @default.
- W4313260057 hasConcept C144024400 @default.
- W4313260057 hasConcept C149782125 @default.
- W4313260057 hasConcept C149923435 @default.
- W4313260057 hasConcept C154945302 @default.
- W4313260057 hasConcept C169903167 @default.
- W4313260057 hasConcept C206658404 @default.
- W4313260057 hasConcept C2780165032 @default.
- W4313260057 hasConcept C2908647359 @default.
- W4313260057 hasConcept C30772137 @default.
- W4313260057 hasConcept C33923547 @default.
- W4313260057 hasConcept C36289849 @default.
- W4313260057 hasConcept C41008148 @default.
- W4313260057 hasConcept C48921125 @default.
- W4313260057 hasConcept C50644808 @default.
- W4313260057 hasConceptScore W4313260057C105795698 @default.
- W4313260057 hasConceptScore W4313260057C119599485 @default.
- W4313260057 hasConceptScore W4313260057C119857082 @default.
- W4313260057 hasConceptScore W4313260057C12267149 @default.
- W4313260057 hasConceptScore W4313260057C127413603 @default.
- W4313260057 hasConceptScore W4313260057C139945424 @default.
- W4313260057 hasConceptScore W4313260057C144024400 @default.
- W4313260057 hasConceptScore W4313260057C149782125 @default.
- W4313260057 hasConceptScore W4313260057C149923435 @default.
- W4313260057 hasConceptScore W4313260057C154945302 @default.
- W4313260057 hasConceptScore W4313260057C169903167 @default.
- W4313260057 hasConceptScore W4313260057C206658404 @default.
- W4313260057 hasConceptScore W4313260057C2780165032 @default.
- W4313260057 hasConceptScore W4313260057C2908647359 @default.
- W4313260057 hasConceptScore W4313260057C30772137 @default.
- W4313260057 hasConceptScore W4313260057C33923547 @default.
- W4313260057 hasConceptScore W4313260057C36289849 @default.
- W4313260057 hasConceptScore W4313260057C41008148 @default.
- W4313260057 hasConceptScore W4313260057C48921125 @default.
- W4313260057 hasConceptScore W4313260057C50644808 @default.
- W4313260057 hasIssue "1" @default.
- W4313260057 hasLocation W43132600571 @default.
- W4313260057 hasLocation W43132600572 @default.
- W4313260057 hasOpenAccess W4313260057 @default.
- W4313260057 hasPrimaryLocation W43132600571 @default.
- W4313260057 hasRelatedWork W1971278352 @default.
- W4313260057 hasRelatedWork W1982952098 @default.
- W4313260057 hasRelatedWork W1996510880 @default.
- W4313260057 hasRelatedWork W1996541855 @default.
- W4313260057 hasRelatedWork W2037316683 @default.
- W4313260057 hasRelatedWork W2913440385 @default.
- W4313260057 hasRelatedWork W2921931375 @default.
- W4313260057 hasRelatedWork W2995227436 @default.
- W4313260057 hasRelatedWork W3099765033 @default.
- W4313260057 hasRelatedWork W3195168932 @default.
- W4313260057 hasVolume "11" @default.