Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313260090> ?p ?o ?g. }
- W4313260090 endingPage "208" @default.
- W4313260090 startingPage "208" @default.
- W4313260090 abstract "Protonic ceramic fuel cells (PCFCs) are one of the promising and emerging technologies for future energy generation. PCFCs are operated at intermediate temperatures (450–750 °C) and exhibit many advantages over traditional high-temperature oxygen-ion conducting solid oxide fuel cells (O-SOFCs) because they are simplified, have a longer life, and have faster startup times. A clear understanding/analysis of their specific working parameters/processes is required to enhance the performance of PCFCs further. Many physical processes, such as heat transfer, species transport, fluid flow, and electrochemical reactions, are involved in the operation of the PCFCs. These parameters are linked with each other along with internal velocity, temperature, and electric field. In real life, a complex non-linear relationship between these process parameters and their respective output cannot be validated only using an experimental setup. Hence, the computational fluid dynamics (CFD) method is an easier and more effective mathematical-based approach, which can easily change various geometric/process parameters of PCFCs and analyze their influence on its efficiency. This short review details the recent studies related to the application of CFD modeling in the PCFC system done by researchers to improve the electrochemical characteristics of the PCFC system. One of the crucial observations from this review is that the application of CFD modeling in PCFC design optimization is still much less than the traditional O-SOFC." @default.
- W4313260090 created "2023-01-06" @default.
- W4313260090 creator A5004107544 @default.
- W4313260090 creator A5009056037 @default.
- W4313260090 creator A5023295596 @default.
- W4313260090 creator A5048802052 @default.
- W4313260090 creator A5051844168 @default.
- W4313260090 creator A5057842798 @default.
- W4313260090 creator A5060368122 @default.
- W4313260090 date "2022-12-25" @default.
- W4313260090 modified "2023-10-03" @default.
- W4313260090 title "Computational Fluid Dynamics for Protonic Ceramic Fuel Cell Stack Modeling: A Brief Review" @default.
- W4313260090 cites W1971659290 @default.
- W4313260090 cites W197492688 @default.
- W4313260090 cites W1979217726 @default.
- W4313260090 cites W1987613649 @default.
- W4313260090 cites W1988203257 @default.
- W4313260090 cites W2010638156 @default.
- W4313260090 cites W2013514672 @default.
- W4313260090 cites W2024847477 @default.
- W4313260090 cites W2029610951 @default.
- W4313260090 cites W2057470976 @default.
- W4313260090 cites W2061844215 @default.
- W4313260090 cites W2062518969 @default.
- W4313260090 cites W2063182259 @default.
- W4313260090 cites W2064478086 @default.
- W4313260090 cites W2070478056 @default.
- W4313260090 cites W2074938615 @default.
- W4313260090 cites W2082539436 @default.
- W4313260090 cites W2083409350 @default.
- W4313260090 cites W2085626539 @default.
- W4313260090 cites W2110100433 @default.
- W4313260090 cites W2111419530 @default.
- W4313260090 cites W2147583099 @default.
- W4313260090 cites W2154150347 @default.
- W4313260090 cites W2162682097 @default.
- W4313260090 cites W2224488504 @default.
- W4313260090 cites W2271039695 @default.
- W4313260090 cites W2297599063 @default.
- W4313260090 cites W2299365561 @default.
- W4313260090 cites W2494313513 @default.
- W4313260090 cites W2565676397 @default.
- W4313260090 cites W2590065484 @default.
- W4313260090 cites W2603189916 @default.
- W4313260090 cites W2606538598 @default.
- W4313260090 cites W2606675786 @default.
- W4313260090 cites W2611148755 @default.
- W4313260090 cites W2618722104 @default.
- W4313260090 cites W2624361105 @default.
- W4313260090 cites W2680887122 @default.
- W4313260090 cites W2734576132 @default.
- W4313260090 cites W2762057383 @default.
- W4313260090 cites W2772274554 @default.
- W4313260090 cites W2796444718 @default.
- W4313260090 cites W2800777016 @default.
- W4313260090 cites W2801671885 @default.
- W4313260090 cites W2884701790 @default.
- W4313260090 cites W2902729006 @default.
- W4313260090 cites W2947215257 @default.
- W4313260090 cites W2970418523 @default.
- W4313260090 cites W2988164652 @default.
- W4313260090 cites W2990244268 @default.
- W4313260090 cites W3007406612 @default.
- W4313260090 cites W3025026703 @default.
- W4313260090 cites W3027365172 @default.
- W4313260090 cites W3043167351 @default.
- W4313260090 cites W3136739933 @default.
- W4313260090 cites W3161491180 @default.
- W4313260090 cites W3167546235 @default.
- W4313260090 cites W3169308208 @default.
- W4313260090 cites W3176364771 @default.
- W4313260090 cites W3184992330 @default.
- W4313260090 cites W3195402405 @default.
- W4313260090 cites W3196171312 @default.
- W4313260090 cites W3198367014 @default.
- W4313260090 cites W3199974716 @default.
- W4313260090 cites W3204158916 @default.
- W4313260090 cites W3210574497 @default.
- W4313260090 cites W3217457260 @default.
- W4313260090 cites W4200090288 @default.
- W4313260090 cites W4205365243 @default.
- W4313260090 cites W4205641549 @default.
- W4313260090 cites W4214897761 @default.
- W4313260090 cites W4214934510 @default.
- W4313260090 cites W4223469373 @default.
- W4313260090 cites W4224277631 @default.
- W4313260090 cites W4224871337 @default.
- W4313260090 cites W4280513477 @default.
- W4313260090 cites W4282825878 @default.
- W4313260090 doi "https://doi.org/10.3390/en16010208" @default.
- W4313260090 hasPublicationYear "2022" @default.
- W4313260090 type Work @default.
- W4313260090 citedByCount "3" @default.
- W4313260090 countsByYear W43132600902023 @default.
- W4313260090 crossrefType "journal-article" @default.
- W4313260090 hasAuthorship W4313260090A5004107544 @default.
- W4313260090 hasAuthorship W4313260090A5009056037 @default.
- W4313260090 hasAuthorship W4313260090A5023295596 @default.