Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313260926> ?p ?o ?g. }
- W4313260926 endingPage "20" @default.
- W4313260926 startingPage "1" @default.
- W4313260926 abstract "Stroke is one of the main causes of long-term disabilities, increasing the cost of national healthcare systems due to the elevated costs of rigorous treatment that is required, as well as personal cost because of the decreased ability of the patient to work. Traditional rehabilitation strategies rely heavily on individual clinical data and the caregiver’s experience to evaluate the patient and not in data extracted from population data. The use of machine learning (ML) algorithms can offer evaluation tools that will lead to new personalized interventions. The aim of this scoping review is to introduce the reader to key directions of ML techniques for the prediction of functional outcomes in stroke rehabilitation and identify future scientific research directions. The search of the relevant literature was performed using PubMed and Semantic Scholar online databases. Full-text articles were included if they focused on ML in predicting the functional outcome of stroke rehabilitation. A total of 26 out of the 265 articles met our inclusion criteria. The selected studies included ML approaches and were directly related to the inclusion criteria. ML can play a key role in supporting decision making during pre- and post-treatment interventions for post-stroke survivors, by utilizing multidisciplinary data sources." @default.
- W4313260926 created "2023-01-06" @default.
- W4313260926 creator A5000302445 @default.
- W4313260926 creator A5005596848 @default.
- W4313260926 creator A5020967225 @default.
- W4313260926 creator A5021368679 @default.
- W4313260926 creator A5037855846 @default.
- W4313260926 creator A5046515624 @default.
- W4313260926 creator A5049992777 @default.
- W4313260926 creator A5059878564 @default.
- W4313260926 creator A5071725473 @default.
- W4313260926 creator A5077526481 @default.
- W4313260926 creator A5078998147 @default.
- W4313260926 date "2022-12-27" @default.
- W4313260926 modified "2023-09-30" @default.
- W4313260926 title "Machine Learning Techniques for the Prediction of Functional Outcomes in the Rehabilitation of Post-Stroke Patients: A Scoping Review" @default.
- W4313260926 cites W2002043305 @default.
- W4313260926 cites W2006866963 @default.
- W4313260926 cites W2020074777 @default.
- W4313260926 cites W2069928219 @default.
- W4313260926 cites W2082585951 @default.
- W4313260926 cites W2088672237 @default.
- W4313260926 cites W2103780294 @default.
- W4313260926 cites W2131708822 @default.
- W4313260926 cites W2144588257 @default.
- W4313260926 cites W2159693397 @default.
- W4313260926 cites W2161117414 @default.
- W4313260926 cites W2172216441 @default.
- W4313260926 cites W2331401605 @default.
- W4313260926 cites W2596500903 @default.
- W4313260926 cites W2726468696 @default.
- W4313260926 cites W2746333498 @default.
- W4313260926 cites W2781666465 @default.
- W4313260926 cites W2886527610 @default.
- W4313260926 cites W2891378911 @default.
- W4313260926 cites W2972300160 @default.
- W4313260926 cites W3003712552 @default.
- W4313260926 cites W3011124015 @default.
- W4313260926 cites W3021286010 @default.
- W4313260926 cites W3033146450 @default.
- W4313260926 cites W3080810277 @default.
- W4313260926 cites W3088548909 @default.
- W4313260926 cites W3089389759 @default.
- W4313260926 cites W3092363318 @default.
- W4313260926 cites W3148818124 @default.
- W4313260926 cites W3157492870 @default.
- W4313260926 cites W3160135602 @default.
- W4313260926 cites W3164787583 @default.
- W4313260926 cites W3178075035 @default.
- W4313260926 cites W3178600839 @default.
- W4313260926 cites W3183660758 @default.
- W4313260926 cites W3197233575 @default.
- W4313260926 cites W3200059418 @default.
- W4313260926 cites W3203427621 @default.
- W4313260926 cites W3205282042 @default.
- W4313260926 cites W3210083015 @default.
- W4313260926 cites W4205139272 @default.
- W4313260926 cites W4210629115 @default.
- W4313260926 cites W4221135943 @default.
- W4313260926 cites W4223610755 @default.
- W4313260926 cites W4225131110 @default.
- W4313260926 cites W4281685737 @default.
- W4313260926 cites W4282940281 @default.
- W4313260926 cites W4283797254 @default.
- W4313260926 cites W4283800225 @default.
- W4313260926 cites W4289518745 @default.
- W4313260926 cites W4293765137 @default.
- W4313260926 cites W4294884191 @default.
- W4313260926 cites W4295046702 @default.
- W4313260926 doi "https://doi.org/10.3390/biomed3010001" @default.
- W4313260926 hasPublicationYear "2022" @default.
- W4313260926 type Work @default.
- W4313260926 citedByCount "0" @default.
- W4313260926 crossrefType "journal-article" @default.
- W4313260926 hasAuthorship W4313260926A5000302445 @default.
- W4313260926 hasAuthorship W4313260926A5005596848 @default.
- W4313260926 hasAuthorship W4313260926A5020967225 @default.
- W4313260926 hasAuthorship W4313260926A5021368679 @default.
- W4313260926 hasAuthorship W4313260926A5037855846 @default.
- W4313260926 hasAuthorship W4313260926A5046515624 @default.
- W4313260926 hasAuthorship W4313260926A5049992777 @default.
- W4313260926 hasAuthorship W4313260926A5059878564 @default.
- W4313260926 hasAuthorship W4313260926A5071725473 @default.
- W4313260926 hasAuthorship W4313260926A5077526481 @default.
- W4313260926 hasAuthorship W4313260926A5078998147 @default.
- W4313260926 hasBestOaLocation W43132609261 @default.
- W4313260926 hasConcept C109359841 @default.
- W4313260926 hasConcept C127413603 @default.
- W4313260926 hasConcept C144024400 @default.
- W4313260926 hasConcept C154945302 @default.
- W4313260926 hasConcept C15744967 @default.
- W4313260926 hasConcept C159110408 @default.
- W4313260926 hasConcept C160735492 @default.
- W4313260926 hasConcept C162324750 @default.
- W4313260926 hasConcept C1862650 @default.
- W4313260926 hasConcept C22467394 @default.
- W4313260926 hasConcept C26517878 @default.
- W4313260926 hasConcept C27415008 @default.