Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313261025> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313261025 endingPage "201" @default.
- W4313261025 startingPage "201" @default.
- W4313261025 abstract "Accurate global horizontal irradiance (GHI) forecasting promotes power grid stability. Most of the research on solar irradiance forecasting has been based on a single-site analysis. It is crucial to explore multisite modeling to capture variations in weather conditions between various sites, thereby producing a more robust model. In this research, we propose the use of spatial regression coupled with Gaussian Process Regression (GP Spatial) and the GP Autoregressive Spatial model (GP-AR Spatial) for the prediction of GHI using data from seven radiometric stations from South Africa and one from Namibia. The results of the proposed methods were compared with a benchmark model, the Linear Spatial Temporal Regression (LSTR) model. Five validation sets each comprised of three stations were chosen. For each validation set, the remaining five stations were used for training. Based on root mean square error, the GP model gave the most accurate forecasts across the validation sets. These results were confirmed by the statistical significance tests using the Giacommini–White test. In terms of coverage probability, there was a 100% coverage on three validation sets and the other two had 97% and 99%. The GP model dominated the other two models. One of the study’s contributions is using standardized forecasts and including a nonlinear trend covariate, which improved the accuracy of the forecasts. The forecasts were combined using a monotone composite quantile regression neural network and a quantile generalized additive model. This modeling framework could be useful to power utility companies in making informed decisions when planning power grid management, including large-scale solar power integration onto the power grid." @default.
- W4313261025 created "2023-01-06" @default.
- W4313261025 creator A5004860476 @default.
- W4313261025 creator A5049749623 @default.
- W4313261025 creator A5083281964 @default.
- W4313261025 date "2022-12-23" @default.
- W4313261025 modified "2023-10-18" @default.
- W4313261025 title "Spatio-Temporal Forecasting of Global Horizontal Irradiance Using Bayesian Inference" @default.
- W4313261025 cites W1996742192 @default.
- W4313261025 cites W2004807582 @default.
- W4313261025 cites W2122825543 @default.
- W4313261025 cites W2417378743 @default.
- W4313261025 cites W2610838890 @default.
- W4313261025 cites W2807966350 @default.
- W4313261025 cites W2900636989 @default.
- W4313261025 cites W2965206442 @default.
- W4313261025 cites W3007191831 @default.
- W4313261025 cites W3010990054 @default.
- W4313261025 cites W3021318637 @default.
- W4313261025 cites W3034377024 @default.
- W4313261025 cites W3106225487 @default.
- W4313261025 cites W3157696538 @default.
- W4313261025 cites W3171713039 @default.
- W4313261025 cites W3191540993 @default.
- W4313261025 cites W3215241060 @default.
- W4313261025 cites W4200086513 @default.
- W4313261025 cites W4285725512 @default.
- W4313261025 cites W4292163979 @default.
- W4313261025 cites W4292671038 @default.
- W4313261025 cites W4297399294 @default.
- W4313261025 cites W4307920525 @default.
- W4313261025 doi "https://doi.org/10.3390/app13010201" @default.
- W4313261025 hasPublicationYear "2022" @default.
- W4313261025 type Work @default.
- W4313261025 citedByCount "2" @default.
- W4313261025 countsByYear W43132610252023 @default.
- W4313261025 crossrefType "journal-article" @default.
- W4313261025 hasAuthorship W4313261025A5004860476 @default.
- W4313261025 hasAuthorship W4313261025A5049749623 @default.
- W4313261025 hasAuthorship W4313261025A5083281964 @default.
- W4313261025 hasBestOaLocation W43132610251 @default.
- W4313261025 hasConcept C105795698 @default.
- W4313261025 hasConcept C107673813 @default.
- W4313261025 hasConcept C124101348 @default.
- W4313261025 hasConcept C149782125 @default.
- W4313261025 hasConcept C159877910 @default.
- W4313261025 hasConcept C33923547 @default.
- W4313261025 hasConcept C41008148 @default.
- W4313261025 hasConcept C63817138 @default.
- W4313261025 hasConceptScore W4313261025C105795698 @default.
- W4313261025 hasConceptScore W4313261025C107673813 @default.
- W4313261025 hasConceptScore W4313261025C124101348 @default.
- W4313261025 hasConceptScore W4313261025C149782125 @default.
- W4313261025 hasConceptScore W4313261025C159877910 @default.
- W4313261025 hasConceptScore W4313261025C33923547 @default.
- W4313261025 hasConceptScore W4313261025C41008148 @default.
- W4313261025 hasConceptScore W4313261025C63817138 @default.
- W4313261025 hasIssue "1" @default.
- W4313261025 hasLocation W43132610251 @default.
- W4313261025 hasLocation W43132610252 @default.
- W4313261025 hasOpenAccess W4313261025 @default.
- W4313261025 hasPrimaryLocation W43132610251 @default.
- W4313261025 hasRelatedWork W1981668609 @default.
- W4313261025 hasRelatedWork W2042380567 @default.
- W4313261025 hasRelatedWork W2077706297 @default.
- W4313261025 hasRelatedWork W2156628102 @default.
- W4313261025 hasRelatedWork W3121264095 @default.
- W4313261025 hasRelatedWork W3122157831 @default.
- W4313261025 hasRelatedWork W3123651201 @default.
- W4313261025 hasRelatedWork W3124791134 @default.
- W4313261025 hasRelatedWork W3138484150 @default.
- W4313261025 hasRelatedWork W4293168461 @default.
- W4313261025 hasVolume "13" @default.
- W4313261025 isParatext "false" @default.
- W4313261025 isRetracted "false" @default.
- W4313261025 workType "article" @default.