Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313261034> ?p ?o ?g. }
- W4313261034 endingPage "35" @default.
- W4313261034 startingPage "35" @default.
- W4313261034 abstract "Fractional calculus has gained a lot of attention in the last couple of years. Researchers have discovered that processes in various fields follow fractional dynamics rather than ordinary integer-ordered dynamics, meaning that the corresponding differential equations feature non-integer valued derivatives. There are several arguments for why this is the case, one of which is that fractional derivatives inherit spatiotemporal memory and/or the ability to express complex naturally occurring phenomena. Another popular topic nowadays is machine learning, i.e., learning behavior and patterns from historical data. In our ever-changing world with ever-increasing amounts of data, machine learning is a powerful tool for data analysis, problem-solving, modeling, and prediction. It has provided many further insights and discoveries in various scientific disciplines. As these two modern-day topics hold a lot of potential for combined approaches in terms of describing complex dynamics, this article review combines approaches from fractional derivatives and machine learning from the past, puts them into context, and thus provides a list of possible combined approaches and the corresponding techniques. Note, however, that this article does not deal with neural networks, as there is already extensive literature on neural networks and fractional calculus. We sorted past combined approaches from the literature into three categories, i.e., preprocessing, machine learning and fractional dynamics, and optimization. The contributions of fractional derivatives to machine learning are manifold as they provide powerful preprocessing and feature augmentation techniques, can improve physically informed machine learning, and are capable of improving hyperparameter optimization. Thus, this article serves to motivate researchers dealing with data-based problems, to be specific machine learning practitioners, to adopt new tools, and enhance their existing approaches." @default.
- W4313261034 created "2023-01-06" @default.
- W4313261034 creator A5057376617 @default.
- W4313261034 creator A5068988506 @default.
- W4313261034 creator A5082152072 @default.
- W4313261034 date "2022-12-24" @default.
- W4313261034 modified "2023-09-24" @default.
- W4313261034 title "Combining Fractional Derivatives and Machine Learning: A Review" @default.
- W4313261034 cites W130151125 @default.
- W4313261034 cites W1969946769 @default.
- W4313261034 cites W2018052006 @default.
- W4313261034 cites W2020095342 @default.
- W4313261034 cites W2021943559 @default.
- W4313261034 cites W2029931724 @default.
- W4313261034 cites W2047717089 @default.
- W4313261034 cites W2052810501 @default.
- W4313261034 cites W2064661518 @default.
- W4313261034 cites W2087719918 @default.
- W4313261034 cites W2093056734 @default.
- W4313261034 cites W2096727866 @default.
- W4313261034 cites W2121766492 @default.
- W4313261034 cites W2289141136 @default.
- W4313261034 cites W2296779811 @default.
- W4313261034 cites W2464501773 @default.
- W4313261034 cites W2589361599 @default.
- W4313261034 cites W2597834885 @default.
- W4313261034 cites W2605056791 @default.
- W4313261034 cites W2607839392 @default.
- W4313261034 cites W2613089901 @default.
- W4313261034 cites W2620301279 @default.
- W4313261034 cites W2743327777 @default.
- W4313261034 cites W2760334487 @default.
- W4313261034 cites W2782098519 @default.
- W4313261034 cites W2790327493 @default.
- W4313261034 cites W2800642273 @default.
- W4313261034 cites W2801192398 @default.
- W4313261034 cites W2894980471 @default.
- W4313261034 cites W2897854935 @default.
- W4313261034 cites W2901164490 @default.
- W4313261034 cites W2914973610 @default.
- W4313261034 cites W2942516496 @default.
- W4313261034 cites W2950627632 @default.
- W4313261034 cites W2965793234 @default.
- W4313261034 cites W3003919802 @default.
- W4313261034 cites W3011462246 @default.
- W4313261034 cites W3012524730 @default.
- W4313261034 cites W3016757920 @default.
- W4313261034 cites W3022499173 @default.
- W4313261034 cites W3023189684 @default.
- W4313261034 cites W3026020785 @default.
- W4313261034 cites W3037641248 @default.
- W4313261034 cites W3039409118 @default.
- W4313261034 cites W3082975707 @default.
- W4313261034 cites W3094835120 @default.
- W4313261034 cites W3096108221 @default.
- W4313261034 cites W3096435759 @default.
- W4313261034 cites W3099752826 @default.
- W4313261034 cites W3105432754 @default.
- W4313261034 cites W3111839142 @default.
- W4313261034 cites W3118535904 @default.
- W4313261034 cites W3128097295 @default.
- W4313261034 cites W3132596840 @default.
- W4313261034 cites W3133807861 @default.
- W4313261034 cites W3134260653 @default.
- W4313261034 cites W3156664478 @default.
- W4313261034 cites W3171489659 @default.
- W4313261034 cites W3174386955 @default.
- W4313261034 cites W3182818347 @default.
- W4313261034 cites W3200986292 @default.
- W4313261034 cites W3207266268 @default.
- W4313261034 cites W3207406778 @default.
- W4313261034 cites W3211278183 @default.
- W4313261034 cites W3211489517 @default.
- W4313261034 cites W3214198969 @default.
- W4313261034 cites W3214732124 @default.
- W4313261034 cites W3214805834 @default.
- W4313261034 cites W3216212972 @default.
- W4313261034 cites W4200105493 @default.
- W4313261034 cites W4200549244 @default.
- W4313261034 cites W4205803013 @default.
- W4313261034 cites W4210677821 @default.
- W4313261034 cites W4211181491 @default.
- W4313261034 cites W4223507298 @default.
- W4313261034 cites W4226113010 @default.
- W4313261034 cites W4280523821 @default.
- W4313261034 cites W4281661120 @default.
- W4313261034 cites W4283323929 @default.
- W4313261034 cites W4304185479 @default.
- W4313261034 cites W628510644 @default.
- W4313261034 cites W3096769233 @default.
- W4313261034 doi "https://doi.org/10.3390/e25010035" @default.
- W4313261034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36673176" @default.
- W4313261034 hasPublicationYear "2022" @default.
- W4313261034 type Work @default.
- W4313261034 citedByCount "4" @default.
- W4313261034 countsByYear W43132610342023 @default.
- W4313261034 crossrefType "journal-article" @default.
- W4313261034 hasAuthorship W4313261034A5057376617 @default.