Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313261772> ?p ?o ?g. }
- W4313261772 abstract "Abstract Motivation Drug–food interactions (DFIs) occur when some constituents of food affect the bioaccessibility or efficacy of the drug by involving in drug pharmacodynamic and/or pharmacokinetic processes. Many computational methods have achieved remarkable results in link prediction tasks between biological entities, which show the potential of computational methods in discovering novel DFIs. However, there are few computational approaches that pay attention to DFI identification. This is mainly due to the lack of DFI data. In addition, food is generally made up of a variety of chemical substances. The complexity of food makes it difficult to generate accurate feature representations for food. Therefore, it is urgent to develop effective computational approaches for learning the food feature representation and predicting DFIs. Results In this article, we first collect DFI data from DrugBank and PubMed, respectively, to construct two datasets, named DrugBank-DFI and PubMed-DFI. Based on these two datasets, two DFI networks are constructed. Then, we propose a novel end-to-end graph embedding-based method named DFinder to identify DFIs. DFinder combines node attribute features and topological structure features to learn the representations of drugs and food constituents. In topology space, we adopt a simplified graph convolution network-based method to learn the topological structure features. In feature space, we use a deep neural network to extract attribute features from the original node attributes. The evaluation results indicate that DFinder performs better than other baseline methods. Availability and implementation The source code is available at https://github.com/23AIBox/23AIBox-DFinder. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W4313261772 created "2023-01-06" @default.
- W4313261772 creator A5014402416 @default.
- W4313261772 creator A5017451479 @default.
- W4313261772 creator A5026250850 @default.
- W4313261772 creator A5040442791 @default.
- W4313261772 creator A5053517207 @default.
- W4313261772 creator A5060968807 @default.
- W4313261772 creator A5084343474 @default.
- W4313261772 creator A5087485700 @default.
- W4313261772 date "2022-12-29" @default.
- W4313261772 modified "2023-10-18" @default.
- W4313261772 title "DFinder: a novel end-to-end graph embedding-based method to identify drug–food interactions" @default.
- W4313261772 cites W1479780899 @default.
- W4313261772 cites W1967752524 @default.
- W4313261772 cites W1968761064 @default.
- W4313261772 cites W1988678216 @default.
- W4313261772 cites W2009313526 @default.
- W4313261772 cites W2018968940 @default.
- W4313261772 cites W2038106686 @default.
- W4313261772 cites W2046007118 @default.
- W4313261772 cites W2048697400 @default.
- W4313261772 cites W2053039860 @default.
- W4313261772 cites W2097308346 @default.
- W4313261772 cites W2152392393 @default.
- W4313261772 cites W2165125496 @default.
- W4313261772 cites W2170146596 @default.
- W4313261772 cites W2170189740 @default.
- W4313261772 cites W2626256289 @default.
- W4313261772 cites W2777416523 @default.
- W4313261772 cites W2786016794 @default.
- W4313261772 cites W2789308831 @default.
- W4313261772 cites W2802200505 @default.
- W4313261772 cites W2900569176 @default.
- W4313261772 cites W2904828342 @default.
- W4313261772 cites W2914721378 @default.
- W4313261772 cites W2923682152 @default.
- W4313261772 cites W2924922861 @default.
- W4313261772 cites W2937963363 @default.
- W4313261772 cites W2948035163 @default.
- W4313261772 cites W2950342274 @default.
- W4313261772 cites W2950834624 @default.
- W4313261772 cites W2962756421 @default.
- W4313261772 cites W2977707586 @default.
- W4313261772 cites W2991847337 @default.
- W4313261772 cites W3004423099 @default.
- W4313261772 cites W3021338900 @default.
- W4313261772 cites W3022603009 @default.
- W4313261772 cites W3039265083 @default.
- W4313261772 cites W3088680691 @default.
- W4313261772 cites W3095479837 @default.
- W4313261772 cites W3098269892 @default.
- W4313261772 cites W3126516421 @default.
- W4313261772 cites W3157889929 @default.
- W4313261772 cites W3198168376 @default.
- W4313261772 cites W4249306916 @default.
- W4313261772 doi "https://doi.org/10.1093/bioinformatics/btac837" @default.
- W4313261772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36579885" @default.
- W4313261772 hasPublicationYear "2022" @default.
- W4313261772 type Work @default.
- W4313261772 citedByCount "0" @default.
- W4313261772 crossrefType "journal-article" @default.
- W4313261772 hasAuthorship W4313261772A5014402416 @default.
- W4313261772 hasAuthorship W4313261772A5017451479 @default.
- W4313261772 hasAuthorship W4313261772A5026250850 @default.
- W4313261772 hasAuthorship W4313261772A5040442791 @default.
- W4313261772 hasAuthorship W4313261772A5053517207 @default.
- W4313261772 hasAuthorship W4313261772A5060968807 @default.
- W4313261772 hasAuthorship W4313261772A5084343474 @default.
- W4313261772 hasAuthorship W4313261772A5087485700 @default.
- W4313261772 hasBestOaLocation W43132617721 @default.
- W4313261772 hasConcept C118552586 @default.
- W4313261772 hasConcept C119857082 @default.
- W4313261772 hasConcept C124101348 @default.
- W4313261772 hasConcept C127413603 @default.
- W4313261772 hasConcept C132525143 @default.
- W4313261772 hasConcept C138885662 @default.
- W4313261772 hasConcept C154945302 @default.
- W4313261772 hasConcept C155261790 @default.
- W4313261772 hasConcept C15744967 @default.
- W4313261772 hasConcept C199360897 @default.
- W4313261772 hasConcept C2776401178 @default.
- W4313261772 hasConcept C2780035454 @default.
- W4313261772 hasConcept C2780801425 @default.
- W4313261772 hasConcept C28225019 @default.
- W4313261772 hasConcept C41008148 @default.
- W4313261772 hasConcept C41608201 @default.
- W4313261772 hasConcept C41895202 @default.
- W4313261772 hasConcept C60644358 @default.
- W4313261772 hasConcept C62611344 @default.
- W4313261772 hasConcept C66938386 @default.
- W4313261772 hasConcept C80444323 @default.
- W4313261772 hasConcept C86803240 @default.
- W4313261772 hasConceptScore W4313261772C118552586 @default.
- W4313261772 hasConceptScore W4313261772C119857082 @default.
- W4313261772 hasConceptScore W4313261772C124101348 @default.
- W4313261772 hasConceptScore W4313261772C127413603 @default.
- W4313261772 hasConceptScore W4313261772C132525143 @default.
- W4313261772 hasConceptScore W4313261772C138885662 @default.
- W4313261772 hasConceptScore W4313261772C154945302 @default.