Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313261864> ?p ?o ?g. }
- W4313261864 abstract "The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification." @default.
- W4313261864 created "2023-01-06" @default.
- W4313261864 creator A5007776175 @default.
- W4313261864 creator A5007897707 @default.
- W4313261864 creator A5015733188 @default.
- W4313261864 creator A5019519408 @default.
- W4313261864 creator A5055819576 @default.
- W4313261864 creator A5064273534 @default.
- W4313261864 creator A5071650569 @default.
- W4313261864 creator A5078340301 @default.
- W4313261864 date "2023-01-04" @default.
- W4313261864 modified "2023-10-17" @default.
- W4313261864 title "Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach" @default.
- W4313261864 cites W2023706704 @default.
- W4313261864 cites W2043001809 @default.
- W4313261864 cites W2051018359 @default.
- W4313261864 cites W2113792279 @default.
- W4313261864 cites W2121885753 @default.
- W4313261864 cites W2194775991 @default.
- W4313261864 cites W2752782242 @default.
- W4313261864 cites W2811244448 @default.
- W4313261864 cites W2890522215 @default.
- W4313261864 cites W2895805893 @default.
- W4313261864 cites W2919115771 @default.
- W4313261864 cites W2943214363 @default.
- W4313261864 cites W2962710355 @default.
- W4313261864 cites W2962858109 @default.
- W4313261864 cites W2963446712 @default.
- W4313261864 cites W3018351936 @default.
- W4313261864 cites W3027034335 @default.
- W4313261864 cites W3082733530 @default.
- W4313261864 cites W3091945887 @default.
- W4313261864 cites W3138516171 @default.
- W4313261864 cites W3167032456 @default.
- W4313261864 cites W3185308247 @default.
- W4313261864 cites W4214717310 @default.
- W4313261864 cites W4225149043 @default.
- W4313261864 cites W4283033951 @default.
- W4313261864 cites W4288085024 @default.
- W4313261864 doi "https://doi.org/10.1080/10106049.2022.2164361" @default.
- W4313261864 hasPublicationYear "2023" @default.
- W4313261864 type Work @default.
- W4313261864 citedByCount "1" @default.
- W4313261864 countsByYear W43132618642023 @default.
- W4313261864 crossrefType "journal-article" @default.
- W4313261864 hasAuthorship W4313261864A5007776175 @default.
- W4313261864 hasAuthorship W4313261864A5007897707 @default.
- W4313261864 hasAuthorship W4313261864A5015733188 @default.
- W4313261864 hasAuthorship W4313261864A5019519408 @default.
- W4313261864 hasAuthorship W4313261864A5055819576 @default.
- W4313261864 hasAuthorship W4313261864A5064273534 @default.
- W4313261864 hasAuthorship W4313261864A5071650569 @default.
- W4313261864 hasAuthorship W4313261864A5078340301 @default.
- W4313261864 hasBestOaLocation W43132618641 @default.
- W4313261864 hasConcept C108583219 @default.
- W4313261864 hasConcept C127413603 @default.
- W4313261864 hasConcept C154945302 @default.
- W4313261864 hasConcept C160633673 @default.
- W4313261864 hasConcept C162324750 @default.
- W4313261864 hasConcept C205649164 @default.
- W4313261864 hasConcept C3020199158 @default.
- W4313261864 hasConcept C39432304 @default.
- W4313261864 hasConcept C39853841 @default.
- W4313261864 hasConcept C41008148 @default.
- W4313261864 hasConcept C50522688 @default.
- W4313261864 hasConcept C548081761 @default.
- W4313261864 hasConcept C62649853 @default.
- W4313261864 hasConcept C75779659 @default.
- W4313261864 hasConcept C81363708 @default.
- W4313261864 hasConcept C89600930 @default.
- W4313261864 hasConceptScore W4313261864C108583219 @default.
- W4313261864 hasConceptScore W4313261864C127413603 @default.
- W4313261864 hasConceptScore W4313261864C154945302 @default.
- W4313261864 hasConceptScore W4313261864C160633673 @default.
- W4313261864 hasConceptScore W4313261864C162324750 @default.
- W4313261864 hasConceptScore W4313261864C205649164 @default.
- W4313261864 hasConceptScore W4313261864C3020199158 @default.
- W4313261864 hasConceptScore W4313261864C39432304 @default.
- W4313261864 hasConceptScore W4313261864C39853841 @default.
- W4313261864 hasConceptScore W4313261864C41008148 @default.
- W4313261864 hasConceptScore W4313261864C50522688 @default.
- W4313261864 hasConceptScore W4313261864C548081761 @default.
- W4313261864 hasConceptScore W4313261864C62649853 @default.
- W4313261864 hasConceptScore W4313261864C75779659 @default.
- W4313261864 hasConceptScore W4313261864C81363708 @default.
- W4313261864 hasConceptScore W4313261864C89600930 @default.
- W4313261864 hasFunder F4320321001 @default.
- W4313261864 hasFunder F4320335777 @default.
- W4313261864 hasIssue "1" @default.
- W4313261864 hasLocation W43132618641 @default.
- W4313261864 hasOpenAccess W4313261864 @default.
- W4313261864 hasPrimaryLocation W43132618641 @default.
- W4313261864 hasRelatedWork W2731899572 @default.
- W4313261864 hasRelatedWork W2899084033 @default.
- W4313261864 hasRelatedWork W3102253946 @default.
- W4313261864 hasRelatedWork W3133861977 @default.
- W4313261864 hasRelatedWork W3144574764 @default.
- W4313261864 hasRelatedWork W4206156330 @default.
- W4313261864 hasRelatedWork W4293211451 @default.
- W4313261864 hasRelatedWork W4308191152 @default.