Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313263102> ?p ?o ?g. }
- W4313263102 endingPage "19" @default.
- W4313263102 startingPage "1" @default.
- W4313263102 abstract "Currently, the internet is increasingly popular. More people are used to sharing their feelings about various things on the internet. Online product marketing information is also growing. How to mine the required information from the massive information with the support of big data technology has become a big problem. Thereby, based on the text mining of online product marketing information, this work discusses the text preprocessing methods and the temporal convolution network (TCN) based on a convolutional neural network (CNN). Moreover, on this basis, multimodal attention mechanism (AM) and cross-modal transformer structure are added to build a TCN based on AM (AM-TCN) model to analyze the multimodal emotion of online product marketing information. The results show that the accuracy of the AM-TCN model is 2.88% higher than that of the TCN model alone, and F1 is 3.47% higher. Moreover, the accuracy rate of the AM-TCN is 1.22% higher than that of the next highest recurrent multistage fusion network, and the F1 value is 0.95% higher." @default.
- W4313263102 created "2023-01-06" @default.
- W4313263102 creator A5007628397 @default.
- W4313263102 creator A5028935305 @default.
- W4313263102 creator A5050432699 @default.
- W4313263102 creator A5052732634 @default.
- W4313263102 creator A5082419772 @default.
- W4313263102 date "2022-12-29" @default.
- W4313263102 modified "2023-10-16" @default.
- W4313263102 title "The Multimodal Sentiment Analysis of Online Product Marketing Information Using Text Mining and Big Data" @default.
- W4313263102 cites W2897888818 @default.
- W4313263102 cites W2970215282 @default.
- W4313263102 cites W2986847027 @default.
- W4313263102 cites W2987287962 @default.
- W4313263102 cites W2989376749 @default.
- W4313263102 cites W2996863350 @default.
- W4313263102 cites W3000466293 @default.
- W4313263102 cites W3004545174 @default.
- W4313263102 cites W3011590044 @default.
- W4313263102 cites W3025111165 @default.
- W4313263102 cites W3025138423 @default.
- W4313263102 cites W3029255206 @default.
- W4313263102 cites W3036727555 @default.
- W4313263102 cites W3094247607 @default.
- W4313263102 cites W3097159520 @default.
- W4313263102 cites W3109416014 @default.
- W4313263102 cites W3112644111 @default.
- W4313263102 cites W3119240988 @default.
- W4313263102 cites W3123585374 @default.
- W4313263102 cites W3125420828 @default.
- W4313263102 cites W3129831852 @default.
- W4313263102 cites W3134570971 @default.
- W4313263102 cites W3146366485 @default.
- W4313263102 cites W3164480005 @default.
- W4313263102 cites W3164796821 @default.
- W4313263102 cites W3171454251 @default.
- W4313263102 cites W3181274577 @default.
- W4313263102 cites W3185593275 @default.
- W4313263102 cites W3196636665 @default.
- W4313263102 cites W3209056694 @default.
- W4313263102 cites W3210710412 @default.
- W4313263102 cites W3213834978 @default.
- W4313263102 cites W4220749970 @default.
- W4313263102 cites W4283774591 @default.
- W4313263102 cites W4283779104 @default.
- W4313263102 cites W4284881463 @default.
- W4313263102 cites W4285741655 @default.
- W4313263102 doi "https://doi.org/10.4018/joeuc.316124" @default.
- W4313263102 hasPublicationYear "2022" @default.
- W4313263102 type Work @default.
- W4313263102 citedByCount "1" @default.
- W4313263102 countsByYear W43132631022023 @default.
- W4313263102 crossrefType "journal-article" @default.
- W4313263102 hasAuthorship W4313263102A5007628397 @default.
- W4313263102 hasAuthorship W4313263102A5028935305 @default.
- W4313263102 hasAuthorship W4313263102A5050432699 @default.
- W4313263102 hasAuthorship W4313263102A5052732634 @default.
- W4313263102 hasAuthorship W4313263102A5082419772 @default.
- W4313263102 hasBestOaLocation W43132631021 @default.
- W4313263102 hasConcept C110875604 @default.
- W4313263102 hasConcept C124101348 @default.
- W4313263102 hasConcept C136764020 @default.
- W4313263102 hasConcept C154945302 @default.
- W4313263102 hasConcept C187008535 @default.
- W4313263102 hasConcept C2522767166 @default.
- W4313263102 hasConcept C2524010 @default.
- W4313263102 hasConcept C33923547 @default.
- W4313263102 hasConcept C34736171 @default.
- W4313263102 hasConcept C41008148 @default.
- W4313263102 hasConcept C512338625 @default.
- W4313263102 hasConcept C518677369 @default.
- W4313263102 hasConcept C66402592 @default.
- W4313263102 hasConcept C75684735 @default.
- W4313263102 hasConcept C81363708 @default.
- W4313263102 hasConcept C90673727 @default.
- W4313263102 hasConceptScore W4313263102C110875604 @default.
- W4313263102 hasConceptScore W4313263102C124101348 @default.
- W4313263102 hasConceptScore W4313263102C136764020 @default.
- W4313263102 hasConceptScore W4313263102C154945302 @default.
- W4313263102 hasConceptScore W4313263102C187008535 @default.
- W4313263102 hasConceptScore W4313263102C2522767166 @default.
- W4313263102 hasConceptScore W4313263102C2524010 @default.
- W4313263102 hasConceptScore W4313263102C33923547 @default.
- W4313263102 hasConceptScore W4313263102C34736171 @default.
- W4313263102 hasConceptScore W4313263102C41008148 @default.
- W4313263102 hasConceptScore W4313263102C512338625 @default.
- W4313263102 hasConceptScore W4313263102C518677369 @default.
- W4313263102 hasConceptScore W4313263102C66402592 @default.
- W4313263102 hasConceptScore W4313263102C75684735 @default.
- W4313263102 hasConceptScore W4313263102C81363708 @default.
- W4313263102 hasConceptScore W4313263102C90673727 @default.
- W4313263102 hasIssue "1" @default.
- W4313263102 hasLocation W43132631021 @default.
- W4313263102 hasOpenAccess W4313263102 @default.
- W4313263102 hasPrimaryLocation W43132631021 @default.
- W4313263102 hasRelatedWork W2342569112 @default.
- W4313263102 hasRelatedWork W2548274677 @default.
- W4313263102 hasRelatedWork W2602741149 @default.