Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313263148> ?p ?o ?g. }
- W4313263148 endingPage "82" @default.
- W4313263148 startingPage "69" @default.
- W4313263148 abstract "Abstract Producing an accurate and calibrated probabilistic forecast has high social and economic value. Systematic errors or biases in the ensemble weather forecast can be corrected by postprocessing models whose development is an urgent challenge. Traditionally, the bias correction is done by employing linear regression models that estimate the conditional probability distribution of the forecast. Although this model framework works well, it is restricted to a prespecified model form that often relies on a limited set of predictors only. Most machine learning (ML) methods can tackle these problems with a point prediction, but only a few of them can be applied effectively in a probabilistic manner. The tree-based ML techniques, namely, natural gradient boosting (NGB), quantile random forests (QRF), and distributional regression forests (DRF), are used to adjust hourly 2-m temperature ensemble prediction at lead times of 1–10 days. The ensemble model output statistics (EMOS) and its boosting version are used as benchmark models. The model forecast is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) for the Czech Republic domain. Two training periods 2015–18 and 2018 only were used to learn the models, and their prediction skill was evaluated in 2019. The results show that the QRF and NGB methods provide the best performance for 1–2-day forecasts, while the EMOS method outperforms other methods for 8–10-day forecasts. Key components to improving short-term forecasting are additional atmospheric/surface state predictors and the 4-yr training sample size. Significance Statement Machine learning methods have great potential and are beginning to be widely applied in meteorology in recent years. A new technique called natural gradient boosting (NGB) has been released and used in this paper to refine the probabilistic forecast of surface temperature. It was found that the NGB has better prediction skills than the traditional ensemble model output statistics in forecasting 1 and 2 days in advance. The NGB has similar prediction skills with lower computational demands compared to other advanced machine learning methods such as the quantile random forests. We showed a path to employ the NGB method in this task, which can be followed for refining other and more challenging meteorological variables such as wind speed or precipitation." @default.
- W4313263148 created "2023-01-06" @default.
- W4313263148 creator A5052965213 @default.
- W4313263148 creator A5077368240 @default.
- W4313263148 creator A5091072118 @default.
- W4313263148 date "2023-01-01" @default.
- W4313263148 modified "2023-10-17" @default.
- W4313263148 title "Postprocessing of Ensemble Weather Forecast Using Decision Tree–Based Probabilistic Forecasting Methods" @default.
- W4313263148 cites W1678356000 @default.
- W4313263148 cites W1970789124 @default.
- W4313263148 cites W1976255336 @default.
- W4313263148 cites W1984113680 @default.
- W4313263148 cites W1993085075 @default.
- W4313263148 cites W2091361900 @default.
- W4313263148 cites W2130715829 @default.
- W4313263148 cites W2133144322 @default.
- W4313263148 cites W2141394518 @default.
- W4313263148 cites W2147975952 @default.
- W4313263148 cites W2158840489 @default.
- W4313263148 cites W2165321703 @default.
- W4313263148 cites W2274356898 @default.
- W4313263148 cites W2296277783 @default.
- W4313263148 cites W2782500509 @default.
- W4313263148 cites W2787565709 @default.
- W4313263148 cites W2795412862 @default.
- W4313263148 cites W2803408063 @default.
- W4313263148 cites W2830616863 @default.
- W4313263148 cites W2911964244 @default.
- W4313263148 cites W2969262985 @default.
- W4313263148 cites W2972425174 @default.
- W4313263148 cites W2991670660 @default.
- W4313263148 cites W2996931448 @default.
- W4313263148 cites W3047222331 @default.
- W4313263148 cites W3092541402 @default.
- W4313263148 cites W3101340403 @default.
- W4313263148 cites W3108051726 @default.
- W4313263148 cites W4248109090 @default.
- W4313263148 doi "https://doi.org/10.1175/waf-d-22-0006.1" @default.
- W4313263148 hasPublicationYear "2023" @default.
- W4313263148 type Work @default.
- W4313263148 citedByCount "1" @default.
- W4313263148 countsByYear W43132631482023 @default.
- W4313263148 crossrefType "journal-article" @default.
- W4313263148 hasAuthorship W4313263148A5052965213 @default.
- W4313263148 hasAuthorship W4313263148A5077368240 @default.
- W4313263148 hasAuthorship W4313263148A5091072118 @default.
- W4313263148 hasConcept C105795698 @default.
- W4313263148 hasConcept C118671147 @default.
- W4313263148 hasConcept C119857082 @default.
- W4313263148 hasConcept C119898033 @default.
- W4313263148 hasConcept C120954023 @default.
- W4313263148 hasConcept C122282355 @default.
- W4313263148 hasConcept C13280743 @default.
- W4313263148 hasConcept C154945302 @default.
- W4313263148 hasConcept C166851805 @default.
- W4313263148 hasConcept C169258074 @default.
- W4313263148 hasConcept C170061395 @default.
- W4313263148 hasConcept C185798385 @default.
- W4313263148 hasConcept C205649164 @default.
- W4313263148 hasConcept C33923547 @default.
- W4313263148 hasConcept C41008148 @default.
- W4313263148 hasConcept C45942800 @default.
- W4313263148 hasConcept C49937458 @default.
- W4313263148 hasConcept C63817138 @default.
- W4313263148 hasConcept C70153297 @default.
- W4313263148 hasConcept C84525736 @default.
- W4313263148 hasConceptScore W4313263148C105795698 @default.
- W4313263148 hasConceptScore W4313263148C118671147 @default.
- W4313263148 hasConceptScore W4313263148C119857082 @default.
- W4313263148 hasConceptScore W4313263148C119898033 @default.
- W4313263148 hasConceptScore W4313263148C120954023 @default.
- W4313263148 hasConceptScore W4313263148C122282355 @default.
- W4313263148 hasConceptScore W4313263148C13280743 @default.
- W4313263148 hasConceptScore W4313263148C154945302 @default.
- W4313263148 hasConceptScore W4313263148C166851805 @default.
- W4313263148 hasConceptScore W4313263148C169258074 @default.
- W4313263148 hasConceptScore W4313263148C170061395 @default.
- W4313263148 hasConceptScore W4313263148C185798385 @default.
- W4313263148 hasConceptScore W4313263148C205649164 @default.
- W4313263148 hasConceptScore W4313263148C33923547 @default.
- W4313263148 hasConceptScore W4313263148C41008148 @default.
- W4313263148 hasConceptScore W4313263148C45942800 @default.
- W4313263148 hasConceptScore W4313263148C49937458 @default.
- W4313263148 hasConceptScore W4313263148C63817138 @default.
- W4313263148 hasConceptScore W4313263148C70153297 @default.
- W4313263148 hasConceptScore W4313263148C84525736 @default.
- W4313263148 hasIssue "1" @default.
- W4313263148 hasLocation W43132631481 @default.
- W4313263148 hasOpenAccess W4313263148 @default.
- W4313263148 hasPrimaryLocation W43132631481 @default.
- W4313263148 hasRelatedWork W2329130322 @default.
- W4313263148 hasRelatedWork W2892702497 @default.
- W4313263148 hasRelatedWork W3100297620 @default.
- W4313263148 hasRelatedWork W3108096541 @default.
- W4313263148 hasRelatedWork W3208169454 @default.
- W4313263148 hasRelatedWork W4285298015 @default.
- W4313263148 hasRelatedWork W4293069612 @default.
- W4313263148 hasRelatedWork W4308191010 @default.