Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313263607> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313263607 abstract "Abstract In this paper 4 types of machine learning models, i.e., Random forest mode, Ridge regression model, Support vector machine model, and Extremely randomized trees model were adopted to predict PM 2.5 based on multi-sources data including air quality, and meteorological data in time series. Data were fed into the model by using rolling prediction method which is proven to improve prediction accuracy in our experiments. The comparative experiments show that at the city level, RF and ExtraTrees models have better predictive results and on season level 4 models all have the best prediction performances in winter time and the worst in the summer time and RF model have the best prediction performance with the IA ranging from 0.93 to 0.98, with an MAE of 5.91 to 11.68 ug/m 3 . Consequently, the demonstration of models’ different performances in each city and each season is expected to shed a light on environmental policy implications." @default.
- W4313263607 created "2023-01-06" @default.
- W4313263607 creator A5021133910 @default.
- W4313263607 creator A5025648249 @default.
- W4313263607 creator A5030957155 @default.
- W4313263607 creator A5039281182 @default.
- W4313263607 creator A5043617746 @default.
- W4313263607 creator A5083553660 @default.
- W4313263607 date "2022-12-29" @default.
- W4313263607 modified "2023-10-17" @default.
- W4313263607 title "PM2.5 concentration forecasting in the area of Jing-Jin-Ji using models based on RF, RR, SVM, and ExtraTrees" @default.
- W4313263607 cites W1974609856 @default.
- W4313263607 cites W1997931360 @default.
- W4313263607 cites W2006067028 @default.
- W4313263607 cites W2033412785 @default.
- W4313263607 cites W2036479846 @default.
- W4313263607 cites W2038923309 @default.
- W4313263607 cites W2056132907 @default.
- W4313263607 cites W2057829983 @default.
- W4313263607 cites W2061232022 @default.
- W4313263607 cites W2156357456 @default.
- W4313263607 cites W2165082430 @default.
- W4313263607 cites W2275537745 @default.
- W4313263607 cites W2289128632 @default.
- W4313263607 cites W2331700789 @default.
- W4313263607 cites W2553839055 @default.
- W4313263607 cites W2590890587 @default.
- W4313263607 cites W2593785661 @default.
- W4313263607 cites W2735500293 @default.
- W4313263607 cites W2771160549 @default.
- W4313263607 cites W2791327965 @default.
- W4313263607 cites W2911964244 @default.
- W4313263607 cites W2913089160 @default.
- W4313263607 cites W2945640320 @default.
- W4313263607 cites W2966841192 @default.
- W4313263607 cites W2974202804 @default.
- W4313263607 cites W3081862827 @default.
- W4313263607 cites W3104205111 @default.
- W4313263607 cites W3119335550 @default.
- W4313263607 cites W3131333586 @default.
- W4313263607 cites W3165356482 @default.
- W4313263607 cites W3169718540 @default.
- W4313263607 cites W4220844774 @default.
- W4313263607 cites W4239510810 @default.
- W4313263607 doi "https://doi.org/10.21203/rs.3.rs-2319186/v1" @default.
- W4313263607 hasPublicationYear "2022" @default.
- W4313263607 type Work @default.
- W4313263607 citedByCount "0" @default.
- W4313263607 crossrefType "posted-content" @default.
- W4313263607 hasAuthorship W4313263607A5021133910 @default.
- W4313263607 hasAuthorship W4313263607A5025648249 @default.
- W4313263607 hasAuthorship W4313263607A5030957155 @default.
- W4313263607 hasAuthorship W4313263607A5039281182 @default.
- W4313263607 hasAuthorship W4313263607A5043617746 @default.
- W4313263607 hasAuthorship W4313263607A5083553660 @default.
- W4313263607 hasBestOaLocation W43132636071 @default.
- W4313263607 hasConcept C105795698 @default.
- W4313263607 hasConcept C119857082 @default.
- W4313263607 hasConcept C12267149 @default.
- W4313263607 hasConcept C153294291 @default.
- W4313263607 hasConcept C154945302 @default.
- W4313263607 hasConcept C169258074 @default.
- W4313263607 hasConcept C205649164 @default.
- W4313263607 hasConcept C32277403 @default.
- W4313263607 hasConcept C33923547 @default.
- W4313263607 hasConcept C39432304 @default.
- W4313263607 hasConcept C41008148 @default.
- W4313263607 hasConcept C45804977 @default.
- W4313263607 hasConcept C58640448 @default.
- W4313263607 hasConcept C83546350 @default.
- W4313263607 hasConceptScore W4313263607C105795698 @default.
- W4313263607 hasConceptScore W4313263607C119857082 @default.
- W4313263607 hasConceptScore W4313263607C12267149 @default.
- W4313263607 hasConceptScore W4313263607C153294291 @default.
- W4313263607 hasConceptScore W4313263607C154945302 @default.
- W4313263607 hasConceptScore W4313263607C169258074 @default.
- W4313263607 hasConceptScore W4313263607C205649164 @default.
- W4313263607 hasConceptScore W4313263607C32277403 @default.
- W4313263607 hasConceptScore W4313263607C33923547 @default.
- W4313263607 hasConceptScore W4313263607C39432304 @default.
- W4313263607 hasConceptScore W4313263607C41008148 @default.
- W4313263607 hasConceptScore W4313263607C45804977 @default.
- W4313263607 hasConceptScore W4313263607C58640448 @default.
- W4313263607 hasConceptScore W4313263607C83546350 @default.
- W4313263607 hasLocation W43132636071 @default.
- W4313263607 hasOpenAccess W4313263607 @default.
- W4313263607 hasPrimaryLocation W43132636071 @default.
- W4313263607 hasRelatedWork W2937631562 @default.
- W4313263607 hasRelatedWork W2985924212 @default.
- W4313263607 hasRelatedWork W3195168932 @default.
- W4313263607 hasRelatedWork W3195610867 @default.
- W4313263607 hasRelatedWork W4210974274 @default.
- W4313263607 hasRelatedWork W4318833575 @default.
- W4313263607 hasRelatedWork W4321636153 @default.
- W4313263607 hasRelatedWork W4377964522 @default.
- W4313263607 hasRelatedWork W4381414210 @default.
- W4313263607 hasRelatedWork W4383535405 @default.
- W4313263607 isParatext "false" @default.
- W4313263607 isRetracted "false" @default.
- W4313263607 workType "article" @default.