Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313268892> ?p ?o ?g. }
- W4313268892 endingPage "18" @default.
- W4313268892 startingPage "18" @default.
- W4313268892 abstract "Abstract In astronomical surveys, such as the Zwicky Transient Facility, supernovae (SNe) are relatively uncommon objects compared to other classes of variable events. Along with this scarcity, the processing of multiband light curves is a challenging task due to the highly irregular cadence, long time gaps, missing values, few observations, etc. These issues are particularly detrimental to the analysis of transient events: SN-like light curves. We offer three main contributions: (1) Based on temporal modulation and attention mechanisms, we propose a deep attention model (TimeModAttn) to classify multiband light curves of different SN types, avoiding photometric or hand-crafted feature computations, missing-value assumptions, and explicit imputation/interpolation methods. (2) We propose a model for the synthetic generation of SN multiband light curves based on the Supernova Parametric Model, allowing us to increase the number of samples and the diversity of cadence. Thus, the TimeModAttn model is first pretrained using synthetic light curves. Then, a fine-tuning process is performed. The TimeModAttn model outperformed other deep learning models, based on recurrent neural networks, in two scenarios: late-classification and early-classification. Also, the TimeModAttn model outperformed a Balanced Random Forest (BRF) classifier (trained with real data), increasing the balanced- F 1 score from ≈.525 to ≈.596. When training the BRF with synthetic data, this model achieved a similar performance to the TimeModAttn model proposed while still maintaining extra advantages. (3) We conducted interpretability experiments. High attention scores were obtained for observations earlier than and close to the SN brightness peaks. This also correlated with an early highly variability of the learned temporal modulation." @default.
- W4313268892 created "2023-01-06" @default.
- W4313268892 creator A5008608225 @default.
- W4313268892 creator A5010931397 @default.
- W4313268892 creator A5029181214 @default.
- W4313268892 date "2022-12-16" @default.
- W4313268892 modified "2023-10-15" @default.
- W4313268892 title "Deep Attention-based Supernovae Classification of Multiband Light Curves" @default.
- W4313268892 cites W1498436455 @default.
- W4313268892 cites W1910256290 @default.
- W4313268892 cites W2011301426 @default.
- W4313268892 cites W2064675550 @default.
- W4313268892 cites W2073832139 @default.
- W4313268892 cites W2101687185 @default.
- W4313268892 cites W2116873022 @default.
- W4313268892 cites W2118973161 @default.
- W4313268892 cites W2146293885 @default.
- W4313268892 cites W2227274187 @default.
- W4313268892 cites W2292579160 @default.
- W4313268892 cites W2625577493 @default.
- W4313268892 cites W2766444039 @default.
- W4313268892 cites W2905450617 @default.
- W4313268892 cites W2911964244 @default.
- W4313268892 cites W2913871063 @default.
- W4313268892 cites W2942944845 @default.
- W4313268892 cites W2945852308 @default.
- W4313268892 cites W3005320834 @default.
- W4313268892 cites W3007335446 @default.
- W4313268892 cites W3009387505 @default.
- W4313268892 cites W3021087295 @default.
- W4313268892 cites W3035008742 @default.
- W4313268892 cites W3047680949 @default.
- W4313268892 cites W3048582549 @default.
- W4313268892 cites W3097846085 @default.
- W4313268892 cites W3098094730 @default.
- W4313268892 cites W3098165218 @default.
- W4313268892 cites W3100796605 @default.
- W4313268892 cites W3101802914 @default.
- W4313268892 cites W3102014803 @default.
- W4313268892 cites W3103235332 @default.
- W4313268892 cites W3103430166 @default.
- W4313268892 cites W3104062568 @default.
- W4313268892 cites W3105535284 @default.
- W4313268892 cites W3105633305 @default.
- W4313268892 cites W3106384162 @default.
- W4313268892 cites W3108551359 @default.
- W4313268892 cites W3137069764 @default.
- W4313268892 cites W3157757780 @default.
- W4313268892 cites W3160538058 @default.
- W4313268892 cites W3166804501 @default.
- W4313268892 cites W3209695238 @default.
- W4313268892 cites W3213496957 @default.
- W4313268892 cites W4212881834 @default.
- W4313268892 doi "https://doi.org/10.3847/1538-3881/ac9ab4" @default.
- W4313268892 hasPublicationYear "2022" @default.
- W4313268892 type Work @default.
- W4313268892 citedByCount "4" @default.
- W4313268892 countsByYear W43132688922023 @default.
- W4313268892 crossrefType "journal-article" @default.
- W4313268892 hasAuthorship W4313268892A5008608225 @default.
- W4313268892 hasAuthorship W4313268892A5010931397 @default.
- W4313268892 hasAuthorship W4313268892A5029181214 @default.
- W4313268892 hasBestOaLocation W43132688921 @default.
- W4313268892 hasConcept C105795698 @default.
- W4313268892 hasConcept C117251300 @default.
- W4313268892 hasConcept C119857082 @default.
- W4313268892 hasConcept C120665830 @default.
- W4313268892 hasConcept C121332964 @default.
- W4313268892 hasConcept C125245961 @default.
- W4313268892 hasConcept C127592171 @default.
- W4313268892 hasConcept C130726490 @default.
- W4313268892 hasConcept C153180895 @default.
- W4313268892 hasConcept C154945302 @default.
- W4313268892 hasConcept C2781067378 @default.
- W4313268892 hasConcept C33923547 @default.
- W4313268892 hasConcept C41008148 @default.
- W4313268892 hasConcept C44870925 @default.
- W4313268892 hasConcept C50644808 @default.
- W4313268892 hasConcept C81363708 @default.
- W4313268892 hasConcept C95623464 @default.
- W4313268892 hasConceptScore W4313268892C105795698 @default.
- W4313268892 hasConceptScore W4313268892C117251300 @default.
- W4313268892 hasConceptScore W4313268892C119857082 @default.
- W4313268892 hasConceptScore W4313268892C120665830 @default.
- W4313268892 hasConceptScore W4313268892C121332964 @default.
- W4313268892 hasConceptScore W4313268892C125245961 @default.
- W4313268892 hasConceptScore W4313268892C127592171 @default.
- W4313268892 hasConceptScore W4313268892C130726490 @default.
- W4313268892 hasConceptScore W4313268892C153180895 @default.
- W4313268892 hasConceptScore W4313268892C154945302 @default.
- W4313268892 hasConceptScore W4313268892C2781067378 @default.
- W4313268892 hasConceptScore W4313268892C33923547 @default.
- W4313268892 hasConceptScore W4313268892C41008148 @default.
- W4313268892 hasConceptScore W4313268892C44870925 @default.
- W4313268892 hasConceptScore W4313268892C50644808 @default.
- W4313268892 hasConceptScore W4313268892C81363708 @default.
- W4313268892 hasConceptScore W4313268892C95623464 @default.
- W4313268892 hasFunder F4320338073 @default.