Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313269327> ?p ?o ?g. }
- W4313269327 endingPage "127287" @default.
- W4313269327 startingPage "127287" @default.
- W4313269327 abstract "With stringent emission regulations, it has become more important for modern diesel engine manufacturers to accurately predict engine-out nitrogen oxide (NOx) emissions across a wide range of operating conditions. Thermal NO is the major source of engine-out NOx in modern diesel engines. For thermal NO formation, several earlier studies have recommended the forward and reverse reaction rate coefficients of the rate-limiting reaction (O + N2 ⇌ NO + N). However, due to deficiencies in sub-models and inadequacies of reduced chemical mechanisms to represent diesel combustion, these recommended values more often than not need to be adjusted in reduced order combustion models to accurately predict engine-out NOx. Hence, in this work a systematic and computationally efficient approach has been proposed to streamline the process of determining the optimum reaction rate coefficients. To develop the optimization approach, four different production diesel engines with different operating conditions in terms of speed, load, and exhaust-gas recirculation have been considered. Numerical simulations have been performed using a detailed zero-dimensional velocity-composition-frequency transported probability density function (0D-VCF-tPDF) model that uses hundreds of notional particles to capture in-cylinder stratification. Four different combinations of hydrocarbon and NOx chemical mechanisms were used to represent chemistry. It was found that for the rate-limiting reaction, the pre-exponent factors (Af1,Ar1) and activation energies (EA,f1,EA,r1) of the forward and reverse reaction rates follow a linear band in Af1−EA,f1 and Ar1−EA,r1 space where predicted engine-out NOx match the measured values closely. By encompassing such bands from different engines and considering constraints on activation energies, a reduced search domain of pre-exponent factors and activation energies was constructed that is expected to be applicable to any diesel engine. Eventually, computationally efficient three-line and one-line search approaches were proposed to determine the optimum values of the pre-exponent factors and activation energies that led to a minimum error between measured and predicted engine-out NOx. Finally, these three-line and one-line NOx optimization approaches were applied to a fifth production diesel engine for which the 0D-VCF-tPDF model showed a very good predictive performance in terms of predicting peak pressure, 50% burn rate, and engine-out NOx when compared to measured and 3D-CFD values." @default.
- W4313269327 created "2023-01-06" @default.
- W4313269327 creator A5017433179 @default.
- W4313269327 creator A5034596900 @default.
- W4313269327 creator A5036352422 @default.
- W4313269327 creator A5036663450 @default.
- W4313269327 creator A5059477576 @default.
- W4313269327 creator A5063338960 @default.
- W4313269327 creator A5072536151 @default.
- W4313269327 creator A5081203603 @default.
- W4313269327 date "2023-04-01" @default.
- W4313269327 modified "2023-10-07" @default.
- W4313269327 title "An indirect approach to optimize the reaction rates of thermal NO formation for diesel engines" @default.
- W4313269327 cites W1918750314 @default.
- W4313269327 cites W1946330067 @default.
- W4313269327 cites W1965096775 @default.
- W4313269327 cites W1967590744 @default.
- W4313269327 cites W1971253486 @default.
- W4313269327 cites W1980892677 @default.
- W4313269327 cites W1987314004 @default.
- W4313269327 cites W2007820698 @default.
- W4313269327 cites W2022485595 @default.
- W4313269327 cites W2024471196 @default.
- W4313269327 cites W2026633216 @default.
- W4313269327 cites W2049069130 @default.
- W4313269327 cites W2054315501 @default.
- W4313269327 cites W2058243765 @default.
- W4313269327 cites W2077162099 @default.
- W4313269327 cites W2091990813 @default.
- W4313269327 cites W2093399382 @default.
- W4313269327 cites W2113061642 @default.
- W4313269327 cites W2119547757 @default.
- W4313269327 cites W2141919037 @default.
- W4313269327 cites W2142893770 @default.
- W4313269327 cites W2145516534 @default.
- W4313269327 cites W2313463308 @default.
- W4313269327 cites W2327830979 @default.
- W4313269327 cites W2613518054 @default.
- W4313269327 cites W2738753082 @default.
- W4313269327 cites W2789361369 @default.
- W4313269327 cites W2790320648 @default.
- W4313269327 cites W2805537248 @default.
- W4313269327 cites W2898758598 @default.
- W4313269327 cites W2905240477 @default.
- W4313269327 cites W3011281014 @default.
- W4313269327 cites W3093541369 @default.
- W4313269327 cites W3126131960 @default.
- W4313269327 cites W3172665579 @default.
- W4313269327 cites W4250823436 @default.
- W4313269327 cites W4306851320 @default.
- W4313269327 doi "https://doi.org/10.1016/j.fuel.2022.127287" @default.
- W4313269327 hasPublicationYear "2023" @default.
- W4313269327 type Work @default.
- W4313269327 citedByCount "0" @default.
- W4313269327 crossrefType "journal-article" @default.
- W4313269327 hasAuthorship W4313269327A5017433179 @default.
- W4313269327 hasAuthorship W4313269327A5034596900 @default.
- W4313269327 hasAuthorship W4313269327A5036352422 @default.
- W4313269327 hasAuthorship W4313269327A5036663450 @default.
- W4313269327 hasAuthorship W4313269327A5059477576 @default.
- W4313269327 hasAuthorship W4313269327A5063338960 @default.
- W4313269327 hasAuthorship W4313269327A5072536151 @default.
- W4313269327 hasAuthorship W4313269327A5081203603 @default.
- W4313269327 hasConcept C103206924 @default.
- W4313269327 hasConcept C105923489 @default.
- W4313269327 hasConcept C106169591 @default.
- W4313269327 hasConcept C121332964 @default.
- W4313269327 hasConcept C127413603 @default.
- W4313269327 hasConcept C138171918 @default.
- W4313269327 hasConcept C147789679 @default.
- W4313269327 hasConcept C161790260 @default.
- W4313269327 hasConcept C171146098 @default.
- W4313269327 hasConcept C175113610 @default.
- W4313269327 hasConcept C185592680 @default.
- W4313269327 hasConcept C203032635 @default.
- W4313269327 hasConcept C21880701 @default.
- W4313269327 hasConcept C2780640597 @default.
- W4313269327 hasConcept C2780804531 @default.
- W4313269327 hasConcept C39432304 @default.
- W4313269327 hasConcept C55493867 @default.
- W4313269327 hasConcept C57879066 @default.
- W4313269327 hasConcept C96949565 @default.
- W4313269327 hasConcept C97355855 @default.
- W4313269327 hasConceptScore W4313269327C103206924 @default.
- W4313269327 hasConceptScore W4313269327C105923489 @default.
- W4313269327 hasConceptScore W4313269327C106169591 @default.
- W4313269327 hasConceptScore W4313269327C121332964 @default.
- W4313269327 hasConceptScore W4313269327C127413603 @default.
- W4313269327 hasConceptScore W4313269327C138171918 @default.
- W4313269327 hasConceptScore W4313269327C147789679 @default.
- W4313269327 hasConceptScore W4313269327C161790260 @default.
- W4313269327 hasConceptScore W4313269327C171146098 @default.
- W4313269327 hasConceptScore W4313269327C175113610 @default.
- W4313269327 hasConceptScore W4313269327C185592680 @default.
- W4313269327 hasConceptScore W4313269327C203032635 @default.
- W4313269327 hasConceptScore W4313269327C21880701 @default.
- W4313269327 hasConceptScore W4313269327C2780640597 @default.
- W4313269327 hasConceptScore W4313269327C2780804531 @default.