Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313270356> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4313270356 abstract "Drinking enough water every day is extremely important for the body to prevent the body from overheating, dehydration, kidney stones, etc., Thus Improving water quality prevents constipation, regulates body temperature, and normalizes B.P, etc., If the quality of water is predicted earlier, deadly risks such as typhoid, diarrhea, dysentery, etc., can be averted. In this paper, Artificial Intelligence techniques are used to predict Water Quality Index (WQI) and Water Quality Classification (WQC). The Indian Water Quality data set was used in this paper. For WQI prediction, neural network models like Long Short-Term Memory (LSTM) and regression models such as Ridge Regression, Random Forest Regressor with Randomized search CV have been developed. For WQC forecasting Machine Learning models like KNN, Logistic Regression, Logistic Regression Using GridSearchCV, XGBoost, SVM, and SVM Using Grid SearchCV for train-test splits like 70–30, 80–20 have been applied. For WQI prediction results demonstrated that Ridge regression has achieved the best R^2 of 95.21% with MSE 0.11. For WQC forecasting, XGBoost has achieved the highest accuracy (97.48%)." @default.
- W4313270356 created "2023-01-06" @default.
- W4313270356 creator A5028851112 @default.
- W4313270356 creator A5038718855 @default.
- W4313270356 creator A5082278563 @default.
- W4313270356 date "2022-09-21" @default.
- W4313270356 modified "2023-10-07" @default.
- W4313270356 title "Water Quality Analysis using Artificial Intelligence Algorithms" @default.
- W4313270356 cites W1993042558 @default.
- W4313270356 cites W2105455980 @default.
- W4313270356 cites W2186629768 @default.
- W4313270356 cites W2647035976 @default.
- W4313270356 cites W2889740942 @default.
- W4313270356 cites W2896412072 @default.
- W4313270356 cites W2981586399 @default.
- W4313270356 cites W3113873473 @default.
- W4313270356 cites W3211647702 @default.
- W4313270356 doi "https://doi.org/10.1109/icirca54612.2022.9985650" @default.
- W4313270356 hasPublicationYear "2022" @default.
- W4313270356 type Work @default.
- W4313270356 citedByCount "2" @default.
- W4313270356 countsByYear W43132703562023 @default.
- W4313270356 crossrefType "proceedings-article" @default.
- W4313270356 hasAuthorship W4313270356A5028851112 @default.
- W4313270356 hasAuthorship W4313270356A5038718855 @default.
- W4313270356 hasAuthorship W4313270356A5082278563 @default.
- W4313270356 hasConcept C105795698 @default.
- W4313270356 hasConcept C11413529 @default.
- W4313270356 hasConcept C119857082 @default.
- W4313270356 hasConcept C12267149 @default.
- W4313270356 hasConcept C151956035 @default.
- W4313270356 hasConcept C154945302 @default.
- W4313270356 hasConcept C169258074 @default.
- W4313270356 hasConcept C18903297 @default.
- W4313270356 hasConcept C2780797713 @default.
- W4313270356 hasConcept C33923547 @default.
- W4313270356 hasConcept C41008148 @default.
- W4313270356 hasConcept C50644808 @default.
- W4313270356 hasConcept C86803240 @default.
- W4313270356 hasConceptScore W4313270356C105795698 @default.
- W4313270356 hasConceptScore W4313270356C11413529 @default.
- W4313270356 hasConceptScore W4313270356C119857082 @default.
- W4313270356 hasConceptScore W4313270356C12267149 @default.
- W4313270356 hasConceptScore W4313270356C151956035 @default.
- W4313270356 hasConceptScore W4313270356C154945302 @default.
- W4313270356 hasConceptScore W4313270356C169258074 @default.
- W4313270356 hasConceptScore W4313270356C18903297 @default.
- W4313270356 hasConceptScore W4313270356C2780797713 @default.
- W4313270356 hasConceptScore W4313270356C33923547 @default.
- W4313270356 hasConceptScore W4313270356C41008148 @default.
- W4313270356 hasConceptScore W4313270356C50644808 @default.
- W4313270356 hasConceptScore W4313270356C86803240 @default.
- W4313270356 hasLocation W43132703561 @default.
- W4313270356 hasOpenAccess W4313270356 @default.
- W4313270356 hasPrimaryLocation W43132703561 @default.
- W4313270356 hasRelatedWork W2979979539 @default.
- W4313270356 hasRelatedWork W3137532542 @default.
- W4313270356 hasRelatedWork W3195168932 @default.
- W4313270356 hasRelatedWork W4205958290 @default.
- W4313270356 hasRelatedWork W4246246790 @default.
- W4313270356 hasRelatedWork W4285237370 @default.
- W4313270356 hasRelatedWork W4286744707 @default.
- W4313270356 hasRelatedWork W4312707991 @default.
- W4313270356 hasRelatedWork W4316658362 @default.
- W4313270356 hasRelatedWork W4321636153 @default.
- W4313270356 isParatext "false" @default.
- W4313270356 isRetracted "false" @default.
- W4313270356 workType "article" @default.