Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313271874> ?p ?o ?g. }
- W4313271874 abstract "Introduction Pulmonary embolism (PE) is a common thrombotic disease and potentially deadly cardiovascular disorder. The ratio of clinical misdiagnosis and missed diagnosis of PE is very large because patients with PE are asymptomatic or non-specific. Methods Using the clinical data from the First Affiliated Hospital of Wenzhou Medical University (Wenzhou, China), we proposed a swarm intelligence algorithm-based kernel extreme learning machine model (SSACS-KELM) to recognize and discriminate the severity of the PE by patient’s basic information and serum biomarkers. First, an enhanced method (SSACS) is presented by combining the salp swarm algorithm (SSA) with the cuckoo search (CS). Then, the SSACS algorithm is introduced into the KELM classifier to propose the SSACS-KELM model to improve the accuracy and stability of the traditional classifier. Results In the experiments, the benchmark optimization performance of SSACS is confirmed by comparing SSACS with five original classical methods and five high-performance improved algorithms through benchmark function experiments. Then, the overall adaptability and accuracy of the SSACS-KELM model are tested using eight public data sets. Further, to highlight the superiority of SSACS-KELM on PE datasets, this paper conducts comparison experiments with other classical classifiers, swarm intelligence algorithms, and feature selection approaches. Discussion The experimental results show that high D-dimer concentration, hypoalbuminemia, and other indicators are important for the diagnosis of PE. The classification results showed that the accuracy of the prediction model was 99.33%. It is expected to be a new and accurate method to distinguish the severity of PE." @default.
- W4313271874 created "2023-01-06" @default.
- W4313271874 creator A5003216199 @default.
- W4313271874 creator A5024138459 @default.
- W4313271874 creator A5028441474 @default.
- W4313271874 creator A5028825697 @default.
- W4313271874 creator A5029620144 @default.
- W4313271874 creator A5070440333 @default.
- W4313271874 creator A5084959523 @default.
- W4313271874 creator A5089624881 @default.
- W4313271874 creator A5046975258 @default.
- W4313271874 date "2022-12-16" @default.
- W4313271874 modified "2023-09-30" @default.
- W4313271874 title "A new machine learning model for predicting severity prognosis in patients with pulmonary embolism: Study protocol from Wenzhou, China" @default.
- W4313271874 cites W1482260147 @default.
- W4313271874 cites W1595159159 @default.
- W4313271874 cites W1597337165 @default.
- W4313271874 cites W1935038205 @default.
- W4313271874 cites W1975259121 @default.
- W4313271874 cites W1975443612 @default.
- W4313271874 cites W1976744965 @default.
- W4313271874 cites W1985734730 @default.
- W4313271874 cites W1986841915 @default.
- W4313271874 cites W1992507577 @default.
- W4313271874 cites W1997145995 @default.
- W4313271874 cites W1997534177 @default.
- W4313271874 cites W2006296021 @default.
- W4313271874 cites W2006957711 @default.
- W4313271874 cites W2015156318 @default.
- W4313271874 cites W2022932023 @default.
- W4313271874 cites W2030930502 @default.
- W4313271874 cites W2033150840 @default.
- W4313271874 cites W2047042581 @default.
- W4313271874 cites W2056208055 @default.
- W4313271874 cites W2058837306 @default.
- W4313271874 cites W2067143182 @default.
- W4313271874 cites W2072300261 @default.
- W4313271874 cites W2089104353 @default.
- W4313271874 cites W2093195672 @default.
- W4313271874 cites W2097561850 @default.
- W4313271874 cites W2106701278 @default.
- W4313271874 cites W2107181407 @default.
- W4313271874 cites W2110002121 @default.
- W4313271874 cites W2120203545 @default.
- W4313271874 cites W2140819416 @default.
- W4313271874 cites W2143155673 @default.
- W4313271874 cites W2152195021 @default.
- W4313271874 cites W2155111071 @default.
- W4313271874 cites W2159298592 @default.
- W4313271874 cites W2165988110 @default.
- W4313271874 cites W2168807618 @default.
- W4313271874 cites W2232317135 @default.
- W4313271874 cites W2263955971 @default.
- W4313271874 cites W2290883490 @default.
- W4313271874 cites W2560547527 @default.
- W4313271874 cites W2561767826 @default.
- W4313271874 cites W2567391332 @default.
- W4313271874 cites W2571576876 @default.
- W4313271874 cites W2607082485 @default.
- W4313271874 cites W2607159358 @default.
- W4313271874 cites W2738900493 @default.
- W4313271874 cites W2765778842 @default.
- W4313271874 cites W2791114613 @default.
- W4313271874 cites W2798104225 @default.
- W4313271874 cites W2799522017 @default.
- W4313271874 cites W2802588762 @default.
- W4313271874 cites W2895779225 @default.
- W4313271874 cites W2897826119 @default.
- W4313271874 cites W2899676218 @default.
- W4313271874 cites W2902086044 @default.
- W4313271874 cites W2913013768 @default.
- W4313271874 cites W2922256990 @default.
- W4313271874 cites W2944416511 @default.
- W4313271874 cites W2965999993 @default.
- W4313271874 cites W2971121646 @default.
- W4313271874 cites W2982594645 @default.
- W4313271874 cites W2985040350 @default.
- W4313271874 cites W2990973273 @default.
- W4313271874 cites W3000586174 @default.
- W4313271874 cites W3007990234 @default.
- W4313271874 cites W3008738493 @default.
- W4313271874 cites W3010012708 @default.
- W4313271874 cites W3015568174 @default.
- W4313271874 cites W3026582963 @default.
- W4313271874 cites W3037887024 @default.
- W4313271874 cites W3038272010 @default.
- W4313271874 cites W3039653985 @default.
- W4313271874 cites W3047348820 @default.
- W4313271874 cites W3080562792 @default.
- W4313271874 cites W3087445665 @default.
- W4313271874 cites W3089094269 @default.
- W4313271874 cites W3090867153 @default.
- W4313271874 cites W3091983105 @default.
- W4313271874 cites W3092178118 @default.
- W4313271874 cites W3094536368 @default.
- W4313271874 cites W3096790175 @default.
- W4313271874 cites W3102977185 @default.
- W4313271874 cites W3113337099 @default.
- W4313271874 cites W3113722716 @default.
- W4313271874 cites W3118383391 @default.