Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313276367> ?p ?o ?g. }
- W4313276367 endingPage "486" @default.
- W4313276367 startingPage "459" @default.
- W4313276367 abstract "In multiple regression, different techniques are available to deal with the situation where the predictors are large in number, and multicollinearity exists among them. Some of these approaches rely on correlation and others depend on principal components. To cope with the influential observations (outliers, leverage, or both) in the data matrix for regression purposes, two techniques are proposed in this paper. These are Robust Correlation Based Regression (RCBR) and Robust Correlation Scaled Principal Component Regression (RCSPCR). These proposed methods are compared with the existing methods, i.e., traditional Principal Component Regression (PCR), Correlation Scaled Principal Component Regression (CSPCR), and Correlation Based Regression (CBR). Also, Macro (Missingness and cellwise and row-wise outliers) RCSPCR is proposed to cope with the problem of multicollinearity, the high dimensionality of the dataset, outliers, and missing observations simultaneously. The proposed techniques are assessed by considering several simulated scenarios with appropriate levels of contamination. The results indicate that the suggested techniques seem to be more reliable for analyzing the data with missingness and outlyingness. Additionally, real-life data applications are also used to illustrate the performance of the proposed methods." @default.
- W4313276367 created "2023-01-06" @default.
- W4313276367 creator A5058771845 @default.
- W4313276367 creator A5065135065 @default.
- W4313276367 date "2023-03-31" @default.
- W4313276367 modified "2023-09-25" @default.
- W4313276367 title "Robust correlation scaled principal component regression" @default.
- W4313276367 cites W1762102136 @default.
- W4313276367 cites W1977994906 @default.
- W4313276367 cites W1979486458 @default.
- W4313276367 cites W1981443767 @default.
- W4313276367 cites W1983350937 @default.
- W4313276367 cites W1987333632 @default.
- W4313276367 cites W1989184743 @default.
- W4313276367 cites W2004661055 @default.
- W4313276367 cites W2007418061 @default.
- W4313276367 cites W2014533295 @default.
- W4313276367 cites W2020088653 @default.
- W4313276367 cites W2046033161 @default.
- W4313276367 cites W2053295697 @default.
- W4313276367 cites W2054834816 @default.
- W4313276367 cites W2064934087 @default.
- W4313276367 cites W2068302187 @default.
- W4313276367 cites W2072596720 @default.
- W4313276367 cites W2087794258 @default.
- W4313276367 cites W2089052299 @default.
- W4313276367 cites W2102066632 @default.
- W4313276367 cites W2116598146 @default.
- W4313276367 cites W2128728535 @default.
- W4313276367 cites W2140968209 @default.
- W4313276367 cites W2152701363 @default.
- W4313276367 cites W2169908081 @default.
- W4313276367 cites W2196682534 @default.
- W4313276367 cites W2235688562 @default.
- W4313276367 cites W2328774599 @default.
- W4313276367 cites W2494864745 @default.
- W4313276367 cites W2498631646 @default.
- W4313276367 cites W2502759836 @default.
- W4313276367 cites W2740586183 @default.
- W4313276367 cites W2751597636 @default.
- W4313276367 cites W2792940999 @default.
- W4313276367 cites W2905045036 @default.
- W4313276367 cites W2911659915 @default.
- W4313276367 cites W3001983193 @default.
- W4313276367 cites W3004046156 @default.
- W4313276367 cites W3036573352 @default.
- W4313276367 cites W3048961822 @default.
- W4313276367 cites W3098993005 @default.
- W4313276367 cites W3099514962 @default.
- W4313276367 cites W3104132964 @default.
- W4313276367 cites W3122204424 @default.
- W4313276367 cites W3153752547 @default.
- W4313276367 cites W3176306191 @default.
- W4313276367 cites W3201108841 @default.
- W4313276367 cites W36711357 @default.
- W4313276367 cites W4205104092 @default.
- W4313276367 cites W4205716817 @default.
- W4313276367 cites W4230778988 @default.
- W4313276367 cites W4233620411 @default.
- W4313276367 cites W4234314512 @default.
- W4313276367 cites W4234698323 @default.
- W4313276367 cites W4244908355 @default.
- W4313276367 cites W4368283301 @default.
- W4313276367 cites W591076336 @default.
- W4313276367 doi "https://doi.org/10.15672/hujms.1122113" @default.
- W4313276367 hasPublicationYear "2023" @default.
- W4313276367 type Work @default.
- W4313276367 citedByCount "0" @default.
- W4313276367 crossrefType "journal-article" @default.
- W4313276367 hasAuthorship W4313276367A5058771845 @default.
- W4313276367 hasAuthorship W4313276367A5065135065 @default.
- W4313276367 hasBestOaLocation W43132763671 @default.
- W4313276367 hasConcept C104317684 @default.
- W4313276367 hasConcept C105795698 @default.
- W4313276367 hasConcept C117220453 @default.
- W4313276367 hasConcept C124101348 @default.
- W4313276367 hasConcept C152877465 @default.
- W4313276367 hasConcept C153083717 @default.
- W4313276367 hasConcept C185592680 @default.
- W4313276367 hasConcept C189285262 @default.
- W4313276367 hasConcept C2524010 @default.
- W4313276367 hasConcept C27438332 @default.
- W4313276367 hasConcept C2777749129 @default.
- W4313276367 hasConcept C33923547 @default.
- W4313276367 hasConcept C41008148 @default.
- W4313276367 hasConcept C48921125 @default.
- W4313276367 hasConcept C55493867 @default.
- W4313276367 hasConcept C63479239 @default.
- W4313276367 hasConcept C67226441 @default.
- W4313276367 hasConcept C70259352 @default.
- W4313276367 hasConcept C74887250 @default.
- W4313276367 hasConcept C79337645 @default.
- W4313276367 hasConcept C83546350 @default.
- W4313276367 hasConcept C9357733 @default.
- W4313276367 hasConceptScore W4313276367C104317684 @default.
- W4313276367 hasConceptScore W4313276367C105795698 @default.
- W4313276367 hasConceptScore W4313276367C117220453 @default.
- W4313276367 hasConceptScore W4313276367C124101348 @default.