Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313282357> ?p ?o ?g. }
- W4313282357 endingPage "2307" @default.
- W4313282357 startingPage "2307" @default.
- W4313282357 abstract "An efficient, convenient, and accurate method for monitoring the distribution characteristics of soil salinity is required to effectively control the damage of saline soil to the land environment and maintain a virtuous cycle of the ecological environment. There are still problems with single-monitoring data that cannot meet the requirements of different regional scales and accuracy, including inconsistent band reflectance between multi-source sensor data. This article proposes a monitoring method based on the multi-source data fusion of unmanned aerial vehicle (UAV) multispectral remote sensing, Sentinel-2A satellite remote sensing, and ground-measured salinity data. The research area and two experimental fields were located in the Yellow River Delta (YRD). The results show that the back-propagation neural network model (BPNN) in the comprehensive estimation model is the best prediction model for soil salinity (modeling accuracy R2 reaches 0.769, verification accuracy R2 reaches 0.774). There is a strong correlation between the satellite and UAV imagery, while the Sentinel-2A imagery after reflectivity correction has a superior estimation effect. In addition, the results of dynamic analysis show that the area of non-saline soil and mild-saline soil decreased, while the area of moderately and heavily saline soils and solonchak increased. Additionally, the average area share of different classes of saline soils distributed over the land use types varied in order, from unused land > grassland > forest land > arable land, where the area share of severe-saline soil distributed on unused land changed the most (89.142%). In this study, the results of estimation are close to the true values, which supports the feasibility of the multi-source data fusion method of UAV remote sensing satellite ground measurements. It not only achieves the estimation of soil salinity and monitoring of change patterns at different scales, but also achieve high accuracy of soil salinity prediction in ascending scale regions. It provides a theoretical scientific basis for the remediation of soil salinization, land use, and environmental protection policies in coastal areas." @default.
- W4313282357 created "2023-01-06" @default.
- W4313282357 creator A5029156858 @default.
- W4313282357 creator A5031108954 @default.
- W4313282357 creator A5058754702 @default.
- W4313282357 creator A5062248159 @default.
- W4313282357 creator A5079162118 @default.
- W4313282357 date "2022-12-15" @default.
- W4313282357 modified "2023-10-14" @default.
- W4313282357 title "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China" @default.
- W4313282357 cites W1963837674 @default.
- W4313282357 cites W1984638002 @default.
- W4313282357 cites W1989789696 @default.
- W4313282357 cites W2032977529 @default.
- W4313282357 cites W2034064282 @default.
- W4313282357 cites W2040611841 @default.
- W4313282357 cites W2045273790 @default.
- W4313282357 cites W2061548250 @default.
- W4313282357 cites W2096990904 @default.
- W4313282357 cites W2098594592 @default.
- W4313282357 cites W2102068507 @default.
- W4313282357 cites W2122628406 @default.
- W4313282357 cites W2230388539 @default.
- W4313282357 cites W2267170332 @default.
- W4313282357 cites W2269059903 @default.
- W4313282357 cites W2278777590 @default.
- W4313282357 cites W228384135 @default.
- W4313282357 cites W2313339984 @default.
- W4313282357 cites W2345420153 @default.
- W4313282357 cites W2537831383 @default.
- W4313282357 cites W2546942510 @default.
- W4313282357 cites W2580701564 @default.
- W4313282357 cites W2606560534 @default.
- W4313282357 cites W2614172772 @default.
- W4313282357 cites W2773793494 @default.
- W4313282357 cites W2795161549 @default.
- W4313282357 cites W2805224709 @default.
- W4313282357 cites W2807837665 @default.
- W4313282357 cites W2888238379 @default.
- W4313282357 cites W2913054803 @default.
- W4313282357 cites W2957367360 @default.
- W4313282357 cites W2962331302 @default.
- W4313282357 cites W2964203285 @default.
- W4313282357 cites W2967105234 @default.
- W4313282357 cites W2998563153 @default.
- W4313282357 cites W3005372647 @default.
- W4313282357 cites W3010068433 @default.
- W4313282357 cites W3022903766 @default.
- W4313282357 cites W3037868565 @default.
- W4313282357 cites W3043720771 @default.
- W4313282357 cites W3082629838 @default.
- W4313282357 cites W3110295943 @default.
- W4313282357 cites W3112145214 @default.
- W4313282357 cites W3116420340 @default.
- W4313282357 cites W3119094740 @default.
- W4313282357 cites W3122338430 @default.
- W4313282357 cites W3190203661 @default.
- W4313282357 cites W3196330597 @default.
- W4313282357 cites W3198536965 @default.
- W4313282357 cites W3204397234 @default.
- W4313282357 cites W3213215216 @default.
- W4313282357 cites W4200450964 @default.
- W4313282357 cites W4224290201 @default.
- W4313282357 cites W4224317518 @default.
- W4313282357 cites W4303980637 @default.
- W4313282357 doi "https://doi.org/10.3390/land11122307" @default.
- W4313282357 hasPublicationYear "2022" @default.
- W4313282357 type Work @default.
- W4313282357 citedByCount "2" @default.
- W4313282357 countsByYear W43132823572023 @default.
- W4313282357 crossrefType "journal-article" @default.
- W4313282357 hasAuthorship W4313282357A5029156858 @default.
- W4313282357 hasAuthorship W4313282357A5031108954 @default.
- W4313282357 hasAuthorship W4313282357A5058754702 @default.
- W4313282357 hasAuthorship W4313282357A5062248159 @default.
- W4313282357 hasAuthorship W4313282357A5079162118 @default.
- W4313282357 hasBestOaLocation W43132823571 @default.
- W4313282357 hasConcept C111368507 @default.
- W4313282357 hasConcept C118518473 @default.
- W4313282357 hasConcept C127313418 @default.
- W4313282357 hasConcept C127413603 @default.
- W4313282357 hasConcept C129513315 @default.
- W4313282357 hasConcept C141650431 @default.
- W4313282357 hasConcept C146978453 @default.
- W4313282357 hasConcept C159390177 @default.
- W4313282357 hasConcept C159750122 @default.
- W4313282357 hasConcept C173163844 @default.
- W4313282357 hasConcept C187320778 @default.
- W4313282357 hasConcept C18903297 @default.
- W4313282357 hasConcept C19269812 @default.
- W4313282357 hasConcept C2775835988 @default.
- W4313282357 hasConcept C2778102629 @default.
- W4313282357 hasConcept C39432304 @default.
- W4313282357 hasConcept C4792198 @default.
- W4313282357 hasConcept C62649853 @default.
- W4313282357 hasConcept C71762439 @default.
- W4313282357 hasConcept C76886044 @default.
- W4313282357 hasConcept C86803240 @default.