Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313283149> ?p ?o ?g. }
- W4313283149 abstract "1 Abstract Treatment of acute and chronic pain represent a widespread clinical challenge with poor therapeutic options. While rodents are an invaluable model to study pain, scoring nociceptive responses in clinically relevant paradigms and at high-throughput remains an unmet challenge. Therefore, there is a need for automated, high-throughput methods that sensitively and accurately assess pain and analgesia. Such objective and scalable technologies will enable the discovery of novel analgesics and yield mechanistic insights into the neural and genetic mechanisms of pain. Here, we adopt the open field arena to build a univariate scale for the formalin injection model of inflammatory pain by using a machine learning approach that incorporates 82 behavioral features. This tool outperforms traditional measures of licking and shaking in detection of formalin dose, and was validated using 4 diverse mouse strains. We also detected previously unreported differences in formalin induced nocifensive behaviors that were strain and sex specific. This model also reliably identifies morphine induced antinociception. This novel, sensitive, and inexpensive tool provides a method for quantifying voluntary nociceptive responses to facilitate genetic mapping and analgesic compound screening in a high throughput manner." @default.
- W4313283149 created "2023-01-06" @default.
- W4313283149 creator A5010535372 @default.
- W4313283149 creator A5022916895 @default.
- W4313283149 creator A5024560658 @default.
- W4313283149 creator A5048377134 @default.
- W4313283149 creator A5077701918 @default.
- W4313283149 date "2022-12-29" @default.
- W4313283149 modified "2023-09-27" @default.
- W4313283149 title "A high-throughput machine vision-based univariate scale for pain and analgesia in mice" @default.
- W4313283149 cites W127203346 @default.
- W4313283149 cites W1977591411 @default.
- W4313283149 cites W1979134363 @default.
- W4313283149 cites W1987184368 @default.
- W4313283149 cites W2001933690 @default.
- W4313283149 cites W2005733093 @default.
- W4313283149 cites W2023402503 @default.
- W4313283149 cites W2024836296 @default.
- W4313283149 cites W2027880398 @default.
- W4313283149 cites W2033438673 @default.
- W4313283149 cites W2035958703 @default.
- W4313283149 cites W2047865790 @default.
- W4313283149 cites W2056787619 @default.
- W4313283149 cites W2070123858 @default.
- W4313283149 cites W2076983043 @default.
- W4313283149 cites W2110812658 @default.
- W4313283149 cites W2121086045 @default.
- W4313283149 cites W2157103853 @default.
- W4313283149 cites W2166622977 @default.
- W4313283149 cites W2168132586 @default.
- W4313283149 cites W2510170606 @default.
- W4313283149 cites W2553928236 @default.
- W4313283149 cites W2577537660 @default.
- W4313283149 cites W2753084136 @default.
- W4313283149 cites W2771017922 @default.
- W4313283149 cites W2790605163 @default.
- W4313283149 cites W2808405426 @default.
- W4313283149 cites W2808862074 @default.
- W4313283149 cites W2888742196 @default.
- W4313283149 cites W2910694877 @default.
- W4313283149 cites W2950439954 @default.
- W4313283149 cites W2952213141 @default.
- W4313283149 cites W2966567124 @default.
- W4313283149 cites W2969706685 @default.
- W4313283149 cites W2999595408 @default.
- W4313283149 cites W3047805832 @default.
- W4313283149 cites W3109858200 @default.
- W4313283149 cites W3135350336 @default.
- W4313283149 cites W3137049560 @default.
- W4313283149 cites W3137131833 @default.
- W4313283149 cites W3158678351 @default.
- W4313283149 cites W3201435727 @default.
- W4313283149 cites W3202008992 @default.
- W4313283149 cites W3207767877 @default.
- W4313283149 cites W4206326164 @default.
- W4313283149 cites W4206651841 @default.
- W4313283149 cites W4239365036 @default.
- W4313283149 cites W4247690662 @default.
- W4313283149 doi "https://doi.org/10.1101/2022.12.29.522204" @default.
- W4313283149 hasPublicationYear "2022" @default.
- W4313283149 type Work @default.
- W4313283149 citedByCount "0" @default.
- W4313283149 crossrefType "posted-content" @default.
- W4313283149 hasAuthorship W4313283149A5010535372 @default.
- W4313283149 hasAuthorship W4313283149A5022916895 @default.
- W4313283149 hasAuthorship W4313283149A5024560658 @default.
- W4313283149 hasAuthorship W4313283149A5048377134 @default.
- W4313283149 hasAuthorship W4313283149A5077701918 @default.
- W4313283149 hasBestOaLocation W43132831491 @default.
- W4313283149 hasConcept C119857082 @default.
- W4313283149 hasConcept C126322002 @default.
- W4313283149 hasConcept C15490471 @default.
- W4313283149 hasConcept C154945302 @default.
- W4313283149 hasConcept C15744967 @default.
- W4313283149 hasConcept C157764524 @default.
- W4313283149 hasConcept C161584116 @default.
- W4313283149 hasConcept C169760540 @default.
- W4313283149 hasConcept C170493617 @default.
- W4313283149 hasConcept C199163554 @default.
- W4313283149 hasConcept C2777389121 @default.
- W4313283149 hasConcept C2780723003 @default.
- W4313283149 hasConcept C2780820201 @default.
- W4313283149 hasConcept C41008148 @default.
- W4313283149 hasConcept C42219234 @default.
- W4313283149 hasConcept C48044578 @default.
- W4313283149 hasConcept C555944384 @default.
- W4313283149 hasConcept C71924100 @default.
- W4313283149 hasConcept C76155785 @default.
- W4313283149 hasConcept C77088390 @default.
- W4313283149 hasConcept C98274493 @default.
- W4313283149 hasConceptScore W4313283149C119857082 @default.
- W4313283149 hasConceptScore W4313283149C126322002 @default.
- W4313283149 hasConceptScore W4313283149C15490471 @default.
- W4313283149 hasConceptScore W4313283149C154945302 @default.
- W4313283149 hasConceptScore W4313283149C15744967 @default.
- W4313283149 hasConceptScore W4313283149C157764524 @default.
- W4313283149 hasConceptScore W4313283149C161584116 @default.
- W4313283149 hasConceptScore W4313283149C169760540 @default.
- W4313283149 hasConceptScore W4313283149C170493617 @default.
- W4313283149 hasConceptScore W4313283149C199163554 @default.