Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313287642> ?p ?o ?g. }
- W4313287642 endingPage "4786" @default.
- W4313287642 startingPage "4786" @default.
- W4313287642 abstract "In addition to monitoring the Poisson mean rate with step shifts, increasing attention has been given to monitoring Poisson processes subject to linear trends. The exponentially weighted moving average (EWMA) control chart has been widely implemented to monitor normal processes, but it lacks investigation for detecting the Poisson mean change under a linear trend. In this paper, we analyze the performance of the EWMA chart by extending the Markov chain model from monitoring Poisson processes under a step shift to a Poisson process with linear drift. The results demonstrate that the proposed method is able to provide accurate average run length approximation, compared with the Monte Carlo simulation. Optimal design tables and sensitivity analysis are presented to facilitate the use of the EWMA chart in practice." @default.
- W4313287642 created "2023-01-06" @default.
- W4313287642 creator A5036752525 @default.
- W4313287642 creator A5046763062 @default.
- W4313287642 creator A5074919470 @default.
- W4313287642 creator A5085341571 @default.
- W4313287642 date "2022-12-16" @default.
- W4313287642 modified "2023-09-26" @default.
- W4313287642 title "A Markov Chain Model for Approximating the Run Length Distributions of Poisson EWMA Charts under Linear Drifts" @default.
- W4313287642 cites W135258734 @default.
- W4313287642 cites W1557793337 @default.
- W4313287642 cites W1563051563 @default.
- W4313287642 cites W1580445123 @default.
- W4313287642 cites W180089130 @default.
- W4313287642 cites W1968509973 @default.
- W4313287642 cites W1980192502 @default.
- W4313287642 cites W1989083215 @default.
- W4313287642 cites W2001788325 @default.
- W4313287642 cites W2007580134 @default.
- W4313287642 cites W201215413 @default.
- W4313287642 cites W2026068237 @default.
- W4313287642 cites W2026478788 @default.
- W4313287642 cites W2042250228 @default.
- W4313287642 cites W2051903196 @default.
- W4313287642 cites W2052423869 @default.
- W4313287642 cites W2056821499 @default.
- W4313287642 cites W2057244885 @default.
- W4313287642 cites W2059359375 @default.
- W4313287642 cites W2073184177 @default.
- W4313287642 cites W2073268151 @default.
- W4313287642 cites W2082219422 @default.
- W4313287642 cites W2091577247 @default.
- W4313287642 cites W2094013156 @default.
- W4313287642 cites W2101366531 @default.
- W4313287642 cites W2105203952 @default.
- W4313287642 cites W2107847131 @default.
- W4313287642 cites W2131716812 @default.
- W4313287642 cites W2167988582 @default.
- W4313287642 cites W2177932553 @default.
- W4313287642 cites W2504706089 @default.
- W4313287642 cites W2518538056 @default.
- W4313287642 cites W2591871179 @default.
- W4313287642 cites W2793067671 @default.
- W4313287642 cites W2793487410 @default.
- W4313287642 cites W988335224 @default.
- W4313287642 doi "https://doi.org/10.3390/math10244786" @default.
- W4313287642 hasPublicationYear "2022" @default.
- W4313287642 type Work @default.
- W4313287642 citedByCount "0" @default.
- W4313287642 crossrefType "journal-article" @default.
- W4313287642 hasAuthorship W4313287642A5036752525 @default.
- W4313287642 hasAuthorship W4313287642A5046763062 @default.
- W4313287642 hasAuthorship W4313287642A5074919470 @default.
- W4313287642 hasAuthorship W4313287642A5085341571 @default.
- W4313287642 hasBestOaLocation W43132876421 @default.
- W4313287642 hasConcept C100906024 @default.
- W4313287642 hasConcept C105795698 @default.
- W4313287642 hasConcept C111350023 @default.
- W4313287642 hasConcept C111919701 @default.
- W4313287642 hasConcept C127413603 @default.
- W4313287642 hasConcept C144024400 @default.
- W4313287642 hasConcept C149923435 @default.
- W4313287642 hasConcept C159886148 @default.
- W4313287642 hasConcept C190812933 @default.
- W4313287642 hasConcept C19499675 @default.
- W4313287642 hasConcept C196985124 @default.
- W4313287642 hasConcept C21200559 @default.
- W4313287642 hasConcept C24326235 @default.
- W4313287642 hasConcept C28826006 @default.
- W4313287642 hasConcept C2908647359 @default.
- W4313287642 hasConcept C33923547 @default.
- W4313287642 hasConcept C41008148 @default.
- W4313287642 hasConcept C73269764 @default.
- W4313287642 hasConcept C74746147 @default.
- W4313287642 hasConcept C98045186 @default.
- W4313287642 hasConcept C98763669 @default.
- W4313287642 hasConceptScore W4313287642C100906024 @default.
- W4313287642 hasConceptScore W4313287642C105795698 @default.
- W4313287642 hasConceptScore W4313287642C111350023 @default.
- W4313287642 hasConceptScore W4313287642C111919701 @default.
- W4313287642 hasConceptScore W4313287642C127413603 @default.
- W4313287642 hasConceptScore W4313287642C144024400 @default.
- W4313287642 hasConceptScore W4313287642C149923435 @default.
- W4313287642 hasConceptScore W4313287642C159886148 @default.
- W4313287642 hasConceptScore W4313287642C190812933 @default.
- W4313287642 hasConceptScore W4313287642C19499675 @default.
- W4313287642 hasConceptScore W4313287642C196985124 @default.
- W4313287642 hasConceptScore W4313287642C21200559 @default.
- W4313287642 hasConceptScore W4313287642C24326235 @default.
- W4313287642 hasConceptScore W4313287642C28826006 @default.
- W4313287642 hasConceptScore W4313287642C2908647359 @default.
- W4313287642 hasConceptScore W4313287642C33923547 @default.
- W4313287642 hasConceptScore W4313287642C41008148 @default.
- W4313287642 hasConceptScore W4313287642C73269764 @default.
- W4313287642 hasConceptScore W4313287642C74746147 @default.
- W4313287642 hasConceptScore W4313287642C98045186 @default.
- W4313287642 hasConceptScore W4313287642C98763669 @default.
- W4313287642 hasFunder F4320321001 @default.