Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313287909> ?p ?o ?g. }
- W4313287909 abstract "Abstract Depression is a prominent cause of mental illness, which could primarily increase early death. It is possible that this is the root of suicidal ideation, and it causes severe impairment in daily life. By detecting human face traits, artificial intelligence (AI) has cleared the road for predicting human emotions. This predictive technique will be used to conduct a preliminary assessment of depression. Prediction is accomplished using a mixture of four modules namely Facial Emotion Recognition (FER), Scales Questionnaire, Speech Emotion Recognition (SER), and Doctor Chat. FER2013 dataset is used for the FER module, while for speech‐based recognition, RAVDESS, TESS, SAVEE, and CREMA‐D are collectively used. To improve the accuracy of the FER, the people in the given image will be fed into a Face API created with TensorFlow JS, which will eventually be given to the proposed model that will recognize human faces in the image. For SER, a python library known as Librosa is used for extracting audio features and it will be fed to the proposed model. The scales module of the app has questionnaires that can be answered, and the result can be generated based on the scores obtained using established scales used in modern psychology such as the HAM‐D, YMRS etc., Though deep learning can predict emotions, the user may choose to speak with a real doctor about the issues to clear up any doubts. The application has a Doctor Chat module, which is essentially a chat bot for interacting with a doctor. Using this module, the users can talk, exchange files, and have their questions answered. The accuracy of FER is 91% whereas for SER, it is 82% on the test sets. The proposed approach produces the highest accuracy for the benchmark dataset. These four modules will work together to produce a homogenous depression report." @default.
- W4313287909 created "2023-01-06" @default.
- W4313287909 creator A5017337728 @default.
- W4313287909 creator A5023826651 @default.
- W4313287909 creator A5030001373 @default.
- W4313287909 creator A5034969585 @default.
- W4313287909 creator A5045121673 @default.
- W4313287909 creator A5052234464 @default.
- W4313287909 creator A5059568000 @default.
- W4313287909 creator A5081770997 @default.
- W4313287909 date "2022-12-16" @default.
- W4313287909 modified "2023-09-25" @default.
- W4313287909 title "An integrated approach for mental health assessment using emotion analysis and scales" @default.
- W4313287909 cites W107532267 @default.
- W4313287909 cites W108566091 @default.
- W4313287909 cites W2074788634 @default.
- W4313287909 cites W2120615054 @default.
- W4313287909 cites W2144476887 @default.
- W4313287909 cites W2147768505 @default.
- W4313287909 cites W2181741066 @default.
- W4313287909 cites W2244142460 @default.
- W4313287909 cites W2574973676 @default.
- W4313287909 cites W2575999316 @default.
- W4313287909 cites W2624419954 @default.
- W4313287909 cites W2747664154 @default.
- W4313287909 cites W2764197504 @default.
- W4313287909 cites W2889717020 @default.
- W4313287909 cites W2890929258 @default.
- W4313287909 cites W2904938641 @default.
- W4313287909 cites W2908671501 @default.
- W4313287909 cites W2913942704 @default.
- W4313287909 cites W2969889150 @default.
- W4313287909 cites W29724405 @default.
- W4313287909 cites W2972463723 @default.
- W4313287909 cites W3047207526 @default.
- W4313287909 cites W3048297990 @default.
- W4313287909 cites W3091936762 @default.
- W4313287909 cites W3095648847 @default.
- W4313287909 cites W3127321867 @default.
- W4313287909 cites W3157429286 @default.
- W4313287909 cites W3200834326 @default.
- W4313287909 cites W4220888885 @default.
- W4313287909 doi "https://doi.org/10.1049/htl2.12040" @default.
- W4313287909 hasPublicationYear "2022" @default.
- W4313287909 type Work @default.
- W4313287909 citedByCount "1" @default.
- W4313287909 countsByYear W43132879092023 @default.
- W4313287909 crossrefType "journal-article" @default.
- W4313287909 hasAuthorship W4313287909A5017337728 @default.
- W4313287909 hasAuthorship W4313287909A5023826651 @default.
- W4313287909 hasAuthorship W4313287909A5030001373 @default.
- W4313287909 hasAuthorship W4313287909A5034969585 @default.
- W4313287909 hasAuthorship W4313287909A5045121673 @default.
- W4313287909 hasAuthorship W4313287909A5052234464 @default.
- W4313287909 hasAuthorship W4313287909A5059568000 @default.
- W4313287909 hasAuthorship W4313287909A5081770997 @default.
- W4313287909 hasBestOaLocation W43132879091 @default.
- W4313287909 hasConcept C111919701 @default.
- W4313287909 hasConcept C119857082 @default.
- W4313287909 hasConcept C126894567 @default.
- W4313287909 hasConcept C138944611 @default.
- W4313287909 hasConcept C144024400 @default.
- W4313287909 hasConcept C154945302 @default.
- W4313287909 hasConcept C15744967 @default.
- W4313287909 hasConcept C195704467 @default.
- W4313287909 hasConcept C2776641880 @default.
- W4313287909 hasConcept C2777438025 @default.
- W4313287909 hasConcept C2779304628 @default.
- W4313287909 hasConcept C2988148770 @default.
- W4313287909 hasConcept C3017944768 @default.
- W4313287909 hasConcept C31510193 @default.
- W4313287909 hasConcept C36289849 @default.
- W4313287909 hasConcept C41008148 @default.
- W4313287909 hasConcept C519991488 @default.
- W4313287909 hasConcept C52622490 @default.
- W4313287909 hasConcept C526869908 @default.
- W4313287909 hasConcept C71924100 @default.
- W4313287909 hasConcept C99454951 @default.
- W4313287909 hasConceptScore W4313287909C111919701 @default.
- W4313287909 hasConceptScore W4313287909C119857082 @default.
- W4313287909 hasConceptScore W4313287909C126894567 @default.
- W4313287909 hasConceptScore W4313287909C138944611 @default.
- W4313287909 hasConceptScore W4313287909C144024400 @default.
- W4313287909 hasConceptScore W4313287909C154945302 @default.
- W4313287909 hasConceptScore W4313287909C15744967 @default.
- W4313287909 hasConceptScore W4313287909C195704467 @default.
- W4313287909 hasConceptScore W4313287909C2776641880 @default.
- W4313287909 hasConceptScore W4313287909C2777438025 @default.
- W4313287909 hasConceptScore W4313287909C2779304628 @default.
- W4313287909 hasConceptScore W4313287909C2988148770 @default.
- W4313287909 hasConceptScore W4313287909C3017944768 @default.
- W4313287909 hasConceptScore W4313287909C31510193 @default.
- W4313287909 hasConceptScore W4313287909C36289849 @default.
- W4313287909 hasConceptScore W4313287909C41008148 @default.
- W4313287909 hasConceptScore W4313287909C519991488 @default.
- W4313287909 hasConceptScore W4313287909C52622490 @default.
- W4313287909 hasConceptScore W4313287909C526869908 @default.
- W4313287909 hasConceptScore W4313287909C71924100 @default.
- W4313287909 hasConceptScore W4313287909C99454951 @default.
- W4313287909 hasLocation W43132879091 @default.