Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313289419> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4313289419 abstract "Researchers are now interested in the invention and improvement of diagnostic instruments for medical diagnosis. One of the technologies utilized in medical inspection and diagnosis is deep learning. The utilization of various data mining algorithms on kidney patient data sets is investigated in this study. The purpose of this research is to employ data mining classifiers to predict kidney failure. Back Propagation Convolutional Neural Network is one of the methods utilized for this diagnostic system. The outcomes of the tests show that the Convolutional neural network (CNN) algorithm outperforms than other classification systems. An automated kidney stone classification is implemented using a Convolutional Neural Network (CNN) image and data processing techniques. It is impossible to produce results for large datasets using human inspection and operators. As a result, this research work utilizes the Convolutional Neural Network (CNN) and the ALEXNET algorithm to overcome the challenge." @default.
- W4313289419 created "2023-01-06" @default.
- W4313289419 creator A5005954199 @default.
- W4313289419 creator A5006583750 @default.
- W4313289419 creator A5040516004 @default.
- W4313289419 creator A5047365406 @default.
- W4313289419 creator A5067827801 @default.
- W4313289419 creator A5072363413 @default.
- W4313289419 creator A5087712437 @default.
- W4313289419 date "2022-09-21" @default.
- W4313289419 modified "2023-09-26" @default.
- W4313289419 title "Kidney Stone Detection Using Deep Learning and Transfer Learning" @default.
- W4313289419 cites W2510496270 @default.
- W4313289419 cites W3021399285 @default.
- W4313289419 cites W3048500491 @default.
- W4313289419 cites W3081114420 @default.
- W4313289419 cites W3092599367 @default.
- W4313289419 cites W3122236046 @default.
- W4313289419 cites W3126224180 @default.
- W4313289419 cites W3148535779 @default.
- W4313289419 cites W4205942815 @default.
- W4313289419 doi "https://doi.org/10.1109/icirca54612.2022.9985723" @default.
- W4313289419 hasPublicationYear "2022" @default.
- W4313289419 type Work @default.
- W4313289419 citedByCount "1" @default.
- W4313289419 countsByYear W43132894192023 @default.
- W4313289419 crossrefType "proceedings-article" @default.
- W4313289419 hasAuthorship W4313289419A5005954199 @default.
- W4313289419 hasAuthorship W4313289419A5006583750 @default.
- W4313289419 hasAuthorship W4313289419A5040516004 @default.
- W4313289419 hasAuthorship W4313289419A5047365406 @default.
- W4313289419 hasAuthorship W4313289419A5067827801 @default.
- W4313289419 hasAuthorship W4313289419A5072363413 @default.
- W4313289419 hasAuthorship W4313289419A5087712437 @default.
- W4313289419 hasConcept C108583219 @default.
- W4313289419 hasConcept C119857082 @default.
- W4313289419 hasConcept C124101348 @default.
- W4313289419 hasConcept C150899416 @default.
- W4313289419 hasConcept C153180895 @default.
- W4313289419 hasConcept C154945302 @default.
- W4313289419 hasConcept C41008148 @default.
- W4313289419 hasConcept C50644808 @default.
- W4313289419 hasConcept C81363708 @default.
- W4313289419 hasConceptScore W4313289419C108583219 @default.
- W4313289419 hasConceptScore W4313289419C119857082 @default.
- W4313289419 hasConceptScore W4313289419C124101348 @default.
- W4313289419 hasConceptScore W4313289419C150899416 @default.
- W4313289419 hasConceptScore W4313289419C153180895 @default.
- W4313289419 hasConceptScore W4313289419C154945302 @default.
- W4313289419 hasConceptScore W4313289419C41008148 @default.
- W4313289419 hasConceptScore W4313289419C50644808 @default.
- W4313289419 hasConceptScore W4313289419C81363708 @default.
- W4313289419 hasLocation W43132894191 @default.
- W4313289419 hasOpenAccess W4313289419 @default.
- W4313289419 hasPrimaryLocation W43132894191 @default.
- W4313289419 hasRelatedWork W2738221750 @default.
- W4313289419 hasRelatedWork W2997709384 @default.
- W4313289419 hasRelatedWork W3091976719 @default.
- W4313289419 hasRelatedWork W3166467183 @default.
- W4313289419 hasRelatedWork W3189091156 @default.
- W4313289419 hasRelatedWork W3192840557 @default.
- W4313289419 hasRelatedWork W4220996320 @default.
- W4313289419 hasRelatedWork W4313289428 @default.
- W4313289419 hasRelatedWork W4362564549 @default.
- W4313289419 hasRelatedWork W4366224123 @default.
- W4313289419 isParatext "false" @default.
- W4313289419 isRetracted "false" @default.
- W4313289419 workType "article" @default.