Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313289426> ?p ?o ?g. }
- W4313289426 endingPage "579" @default.
- W4313289426 startingPage "573" @default.
- W4313289426 abstract "Researchers are studying how artificial intelligence (AI) can be used to better detect, prognosticate and subgroup diseases. The idea that AI might advance medicine's understanding of biological categories of psychiatric disorders, as well as provide better treatments, is appealing given the historical challenges with prediction, diagnosis and treatment in psychiatry. Given the power of AI to analyse vast amounts of information, some clinicians may feel obligated to align their clinical judgements with the outputs of the AI system. However, a potential epistemic privileging of AI in clinical judgements may lead to unintended consequences that could negatively affect patient treatment, well-being and rights. The implications are also relevant to precision medicine, digital twin technologies and predictive analytics generally. We propose that a commitment to epistemic humility can help promote judicious clinical decision-making at the interface of big data and AI in psychiatry." @default.
- W4313289426 created "2023-01-06" @default.
- W4313289426 creator A5063981686 @default.
- W4313289426 creator A5066952814 @default.
- W4313289426 creator A5069659750 @default.
- W4313289426 date "2022-12-29" @default.
- W4313289426 modified "2023-10-14" @default.
- W4313289426 title "Evidence, ethics and the promise of artificial intelligence in psychiatry" @default.
- W4313289426 cites W1941285393 @default.
- W4313289426 cites W1967833059 @default.
- W4313289426 cites W1999671908 @default.
- W4313289426 cites W2000316648 @default.
- W4313289426 cites W2010464927 @default.
- W4313289426 cites W2033607319 @default.
- W4313289426 cites W2045592350 @default.
- W4313289426 cites W2049648156 @default.
- W4313289426 cites W2054076956 @default.
- W4313289426 cites W2059378442 @default.
- W4313289426 cites W2067268774 @default.
- W4313289426 cites W2087256811 @default.
- W4313289426 cites W2095154224 @default.
- W4313289426 cites W2105618774 @default.
- W4313289426 cites W2118540296 @default.
- W4313289426 cites W2138172214 @default.
- W4313289426 cites W2162100119 @default.
- W4313289426 cites W2281090488 @default.
- W4313289426 cites W2526973614 @default.
- W4313289426 cites W2748352200 @default.
- W4313289426 cites W2771318787 @default.
- W4313289426 cites W2791090761 @default.
- W4313289426 cites W2892320538 @default.
- W4313289426 cites W2897134189 @default.
- W4313289426 cites W2898970033 @default.
- W4313289426 cites W2902634493 @default.
- W4313289426 cites W2915292867 @default.
- W4313289426 cites W2955232491 @default.
- W4313289426 cites W2955277345 @default.
- W4313289426 cites W2981451251 @default.
- W4313289426 cites W2982580298 @default.
- W4313289426 cites W2985355520 @default.
- W4313289426 cites W2993673766 @default.
- W4313289426 cites W2996564975 @default.
- W4313289426 cites W2997802292 @default.
- W4313289426 cites W2998151052 @default.
- W4313289426 cites W2999885075 @default.
- W4313289426 cites W3021807438 @default.
- W4313289426 cites W3036298167 @default.
- W4313289426 cites W3094293959 @default.
- W4313289426 cites W3101792976 @default.
- W4313289426 cites W3109650690 @default.
- W4313289426 cites W3127032480 @default.
- W4313289426 cites W3127924821 @default.
- W4313289426 cites W3130937151 @default.
- W4313289426 cites W3132771424 @default.
- W4313289426 cites W3160005967 @default.
- W4313289426 cites W3163443091 @default.
- W4313289426 cites W3166488533 @default.
- W4313289426 cites W3169134539 @default.
- W4313289426 cites W3175302897 @default.
- W4313289426 cites W3182564124 @default.
- W4313289426 cites W3182632529 @default.
- W4313289426 cites W3183015861 @default.
- W4313289426 cites W3190904455 @default.
- W4313289426 cites W3209901185 @default.
- W4313289426 cites W3211034094 @default.
- W4313289426 cites W3213880547 @default.
- W4313289426 cites W4205591106 @default.
- W4313289426 cites W4206020641 @default.
- W4313289426 cites W4206154777 @default.
- W4313289426 cites W4207074774 @default.
- W4313289426 cites W4220726160 @default.
- W4313289426 cites W4220882191 @default.
- W4313289426 cites W4220882633 @default.
- W4313289426 cites W4229771506 @default.
- W4313289426 cites W4251338671 @default.
- W4313289426 cites W4252633962 @default.
- W4313289426 cites W4283165438 @default.
- W4313289426 cites W4283369859 @default.
- W4313289426 cites W4290775674 @default.
- W4313289426 cites W4303986529 @default.
- W4313289426 cites W4380234578 @default.
- W4313289426 cites W861248319 @default.
- W4313289426 cites W3090517283 @default.
- W4313289426 doi "https://doi.org/10.1136/jme-2022-108447" @default.
- W4313289426 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36581457" @default.
- W4313289426 hasPublicationYear "2022" @default.
- W4313289426 type Work @default.
- W4313289426 citedByCount "7" @default.
- W4313289426 countsByYear W43132894262023 @default.
- W4313289426 crossrefType "journal-article" @default.
- W4313289426 hasAuthorship W4313289426A5063981686 @default.
- W4313289426 hasAuthorship W4313289426A5066952814 @default.
- W4313289426 hasAuthorship W4313289426A5069659750 @default.
- W4313289426 hasBestOaLocation W43132894261 @default.
- W4313289426 hasConcept C111472728 @default.
- W4313289426 hasConcept C111919701 @default.
- W4313289426 hasConcept C118552586 @default.
- W4313289426 hasConcept C127413603 @default.