Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313289436> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313289436 abstract "Botnet, which are used for cybercrime, have recently become a powerful threat on the Internet. Using machine learning techniques, the different ways to detect botnet are examined. There are various types of botnet attack, such as DDOS, spamming, fraud, etc., that can be used by malicious users to attack systems. In order to detect such attacks, packet analysis signatures are used and marked as normal or as human attacks. In order to identify if a new request packet is an attack or not, signatures will be applied, and this method requires manual effort and is updated every time a new attack occurs. The author will utilise machine learning algorithms in order to overcome the above problem. Machine learning algorithms will be used to train and create a model, which will then be applied to new request data to detect normal and abnormal actions. Using the KMEANS algorithm, the dataset will be separated into BOT and BENIGN records. This approach will use graph-based features to extract features from the dataset. Data will be sent to a graph, where each address will be represented as a vertex, and edge connections will be made between the source and destination. Edge weights will be calculated based on incoming and outgoing link connections. To determine edge weights, different parameters such as betweenness centrality, incoming edge weight, outgoing edge weight, and alpha_centrality weight are calculated. The results from all these calculations are combined into in-deg, outdeg, in-deg_wt, out_deg_wt, clustering, and alpha_centrality as features. If there are a high number of connections, then the label will read “1” (BOT); if not, then “0” (normal)." @default.
- W4313289436 created "2023-01-06" @default.
- W4313289436 creator A5010613015 @default.
- W4313289436 creator A5021732316 @default.
- W4313289436 creator A5041281646 @default.
- W4313289436 creator A5059332909 @default.
- W4313289436 date "2022-09-21" @default.
- W4313289436 modified "2023-09-27" @default.
- W4313289436 title "Malicious Attacks Detection Using Machine Learning" @default.
- W4313289436 doi "https://doi.org/10.1109/icirca54612.2022.9985551" @default.
- W4313289436 hasPublicationYear "2022" @default.
- W4313289436 type Work @default.
- W4313289436 citedByCount "0" @default.
- W4313289436 crossrefType "proceedings-article" @default.
- W4313289436 hasAuthorship W4313289436A5010613015 @default.
- W4313289436 hasAuthorship W4313289436A5021732316 @default.
- W4313289436 hasAuthorship W4313289436A5041281646 @default.
- W4313289436 hasAuthorship W4313289436A5059332909 @default.
- W4313289436 hasConcept C110875604 @default.
- W4313289436 hasConcept C114614502 @default.
- W4313289436 hasConcept C117045392 @default.
- W4313289436 hasConcept C119857082 @default.
- W4313289436 hasConcept C124101348 @default.
- W4313289436 hasConcept C136764020 @default.
- W4313289436 hasConcept C154945302 @default.
- W4313289436 hasConcept C158379750 @default.
- W4313289436 hasConcept C158955206 @default.
- W4313289436 hasConcept C162307627 @default.
- W4313289436 hasConcept C22735295 @default.
- W4313289436 hasConcept C33923547 @default.
- W4313289436 hasConcept C38652104 @default.
- W4313289436 hasConcept C38822068 @default.
- W4313289436 hasConcept C41008148 @default.
- W4313289436 hasConcept C53811970 @default.
- W4313289436 hasConcept C73555534 @default.
- W4313289436 hasConcept C83860907 @default.
- W4313289436 hasConceptScore W4313289436C110875604 @default.
- W4313289436 hasConceptScore W4313289436C114614502 @default.
- W4313289436 hasConceptScore W4313289436C117045392 @default.
- W4313289436 hasConceptScore W4313289436C119857082 @default.
- W4313289436 hasConceptScore W4313289436C124101348 @default.
- W4313289436 hasConceptScore W4313289436C136764020 @default.
- W4313289436 hasConceptScore W4313289436C154945302 @default.
- W4313289436 hasConceptScore W4313289436C158379750 @default.
- W4313289436 hasConceptScore W4313289436C158955206 @default.
- W4313289436 hasConceptScore W4313289436C162307627 @default.
- W4313289436 hasConceptScore W4313289436C22735295 @default.
- W4313289436 hasConceptScore W4313289436C33923547 @default.
- W4313289436 hasConceptScore W4313289436C38652104 @default.
- W4313289436 hasConceptScore W4313289436C38822068 @default.
- W4313289436 hasConceptScore W4313289436C41008148 @default.
- W4313289436 hasConceptScore W4313289436C53811970 @default.
- W4313289436 hasConceptScore W4313289436C73555534 @default.
- W4313289436 hasConceptScore W4313289436C83860907 @default.
- W4313289436 hasLocation W43132894361 @default.
- W4313289436 hasOpenAccess W4313289436 @default.
- W4313289436 hasPrimaryLocation W43132894361 @default.
- W4313289436 hasRelatedWork W1594131070 @default.
- W4313289436 hasRelatedWork W1926916177 @default.
- W4313289436 hasRelatedWork W2149331048 @default.
- W4313289436 hasRelatedWork W2521794519 @default.
- W4313289436 hasRelatedWork W2535952706 @default.
- W4313289436 hasRelatedWork W2607330742 @default.
- W4313289436 hasRelatedWork W2779267770 @default.
- W4313289436 hasRelatedWork W3005900565 @default.
- W4313289436 hasRelatedWork W3117634829 @default.
- W4313289436 hasRelatedWork W4231435151 @default.
- W4313289436 isParatext "false" @default.
- W4313289436 isRetracted "false" @default.
- W4313289436 workType "article" @default.