Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291180> ?p ?o ?g. }
- W4313291180 endingPage "5891" @default.
- W4313291180 startingPage "5877" @default.
- W4313291180 abstract "In this paper, we address the problem of detection and tracking of dim targets in radar systems through the use of multi-frame detection (MFD) techniques. We first study the energy expansion problem during multi-frame integration for classical MFD methods, which shows that the extended energy peak envelope poses a great challenge for target detection in nonhomogeneous backgrounds and multi-target cases. Next, a greedy integration based MFD algorithm is proposed, which separates the overall multi-frame joint maximization into two processes of confidence building and extended energy suppression. The proposed algorithm can eliminate the energy expansion intrinsically and achieve better detection performance with a lower implementation complexity. In addition, we extend the proposed algorithm to radar systems by deriving the accurate nonlinear conversion relationships between target states of Cartesian coordinates and echo measurements of polar coordinates. In radar scenarios, the proposed algorithm is capable to make detection adaptively after multi-frame integration through the use of traditional constant false alarm rate (CFAR) procedures. Finally, numerical results and tests with real radar data are presented to demonstrate the effectiveness of the proposed algorithm." @default.
- W4313291180 created "2023-01-06" @default.
- W4313291180 creator A5013953750 @default.
- W4313291180 creator A5015306019 @default.
- W4313291180 creator A5078754231 @default.
- W4313291180 date "2023-05-01" @default.
- W4313291180 modified "2023-10-16" @default.
- W4313291180 title "Greedy Integration Based Multi-Frame Detection Algorithm in Radar Systems" @default.
- W4313291180 cites W1971008109 @default.
- W4313291180 cites W1973792507 @default.
- W4313291180 cites W1985690368 @default.
- W4313291180 cites W1992518780 @default.
- W4313291180 cites W2008066920 @default.
- W4313291180 cites W2018697056 @default.
- W4313291180 cites W2023286597 @default.
- W4313291180 cites W2038908796 @default.
- W4313291180 cites W2042301151 @default.
- W4313291180 cites W2048605796 @default.
- W4313291180 cites W2050358028 @default.
- W4313291180 cites W2052240371 @default.
- W4313291180 cites W2067341428 @default.
- W4313291180 cites W2067396860 @default.
- W4313291180 cites W2068722817 @default.
- W4313291180 cites W2097785478 @default.
- W4313291180 cites W2114512496 @default.
- W4313291180 cites W2129223507 @default.
- W4313291180 cites W2129708101 @default.
- W4313291180 cites W2137062348 @default.
- W4313291180 cites W2137624561 @default.
- W4313291180 cites W2140269179 @default.
- W4313291180 cites W2148749846 @default.
- W4313291180 cites W2156096110 @default.
- W4313291180 cites W2156650489 @default.
- W4313291180 cites W2169396814 @default.
- W4313291180 cites W2394863419 @default.
- W4313291180 cites W2398053359 @default.
- W4313291180 cites W2479138194 @default.
- W4313291180 cites W2487431103 @default.
- W4313291180 cites W2586283610 @default.
- W4313291180 cites W2612889333 @default.
- W4313291180 cites W2748542155 @default.
- W4313291180 cites W2890550730 @default.
- W4313291180 cites W2901372043 @default.
- W4313291180 cites W2912627413 @default.
- W4313291180 cites W2932703605 @default.
- W4313291180 cites W2975094552 @default.
- W4313291180 cites W2981753322 @default.
- W4313291180 cites W3008383159 @default.
- W4313291180 cites W3022683222 @default.
- W4313291180 cites W3132328797 @default.
- W4313291180 cites W3136081918 @default.
- W4313291180 cites W3162095947 @default.
- W4313291180 cites W4225691050 @default.
- W4313291180 cites W4253548191 @default.
- W4313291180 cites W4312309864 @default.
- W4313291180 doi "https://doi.org/10.1109/tvt.2022.3232785" @default.
- W4313291180 hasPublicationYear "2023" @default.
- W4313291180 type Work @default.
- W4313291180 citedByCount "1" @default.
- W4313291180 countsByYear W43132911802023 @default.
- W4313291180 crossrefType "journal-article" @default.
- W4313291180 hasAuthorship W4313291180A5013953750 @default.
- W4313291180 hasAuthorship W4313291180A5015306019 @default.
- W4313291180 hasAuthorship W4313291180A5078754231 @default.
- W4313291180 hasConcept C105795698 @default.
- W4313291180 hasConcept C11413529 @default.
- W4313291180 hasConcept C126042441 @default.
- W4313291180 hasConcept C126255220 @default.
- W4313291180 hasConcept C154945302 @default.
- W4313291180 hasConcept C186370098 @default.
- W4313291180 hasConcept C2776330181 @default.
- W4313291180 hasConcept C2776836416 @default.
- W4313291180 hasConcept C32283439 @default.
- W4313291180 hasConcept C33923547 @default.
- W4313291180 hasConcept C41008148 @default.
- W4313291180 hasConcept C51823790 @default.
- W4313291180 hasConcept C554190296 @default.
- W4313291180 hasConcept C76155785 @default.
- W4313291180 hasConcept C77052588 @default.
- W4313291180 hasConceptScore W4313291180C105795698 @default.
- W4313291180 hasConceptScore W4313291180C11413529 @default.
- W4313291180 hasConceptScore W4313291180C126042441 @default.
- W4313291180 hasConceptScore W4313291180C126255220 @default.
- W4313291180 hasConceptScore W4313291180C154945302 @default.
- W4313291180 hasConceptScore W4313291180C186370098 @default.
- W4313291180 hasConceptScore W4313291180C2776330181 @default.
- W4313291180 hasConceptScore W4313291180C2776836416 @default.
- W4313291180 hasConceptScore W4313291180C32283439 @default.
- W4313291180 hasConceptScore W4313291180C33923547 @default.
- W4313291180 hasConceptScore W4313291180C41008148 @default.
- W4313291180 hasConceptScore W4313291180C51823790 @default.
- W4313291180 hasConceptScore W4313291180C554190296 @default.
- W4313291180 hasConceptScore W4313291180C76155785 @default.
- W4313291180 hasConceptScore W4313291180C77052588 @default.
- W4313291180 hasFunder F4320321001 @default.
- W4313291180 hasFunder F4320327912 @default.
- W4313291180 hasIssue "5" @default.
- W4313291180 hasLocation W43132911801 @default.