Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291220> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4313291220 endingPage "14" @default.
- W4313291220 startingPage "1" @default.
- W4313291220 abstract "Fuzzy clustering-based neural networks (FCNNs) based on information granulation techniques have been shown to be effective Takagi-Sugeno (TS)-type fuzzy models. However, the existing FCNNs could not cope well with sequential learning tasks. In this study, we introduce incremental FCNNs (IFCNNs), which could dynamically update themselves whenever new learning data (e.g., single datum or block data) are incorporated into the dataset. Specifically, we employ dynamic (incremental) fuzzy C-means (FCMs) clustering algorithms to reveal a structure in data and divide the entire input space into several subregions. In the aforementioned partition, the dynamic FCM adaptively adjusts the position of its prototypes by using sequential data. Due to the time-sharing arrival of training data, compared with batch learning models, incremental learning methods may lose classification (prediction) accuracy. In order to tackle this challenge, we utilize quasi-fuzzy local models (QFLMs) based on modified Schmidt neural networks to replace the popular linear functions in TS-type fuzzy models to refine and enhance the ability to represent the behavior of fuzzy subspaces. Meanwhile, the recursive least square error (LSE) estimation is utilized to update the weights of QFLMs from one-by-one or block-by-block (fixed or varying block size) learning data. In addition, the L2 regularization is considered to ameliorate the deterioration of generalization abilities caused by potential overfitting when carrying out weight estimation. The proposed method leads to the construction of FCNNs in a new way, which can effectively deal with incremental data as well as deliver sound generalization capability. Extensive machine-learning datasets and a real-world application are employed to show the validity and performance of the presented methods. From the experimental results, we show that the proposal can maintain sound classification accuracy when effectively processing sequential data." @default.
- W4313291220 created "2023-01-06" @default.
- W4313291220 creator A5003799782 @default.
- W4313291220 creator A5035932097 @default.
- W4313291220 creator A5040372935 @default.
- W4313291220 creator A5074686535 @default.
- W4313291220 date "2022-01-01" @default.
- W4313291220 modified "2023-09-27" @default.
- W4313291220 title "Incremental Fuzzy Clustering-Based Neural Networks Driven With the Aid of Dynamic Input Space Partition and Quasi-Fuzzy Local Models" @default.
- W4313291220 doi "https://doi.org/10.1109/tcyb.2022.3228303" @default.
- W4313291220 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37015632" @default.
- W4313291220 hasPublicationYear "2022" @default.
- W4313291220 type Work @default.
- W4313291220 citedByCount "0" @default.
- W4313291220 crossrefType "journal-article" @default.
- W4313291220 hasAuthorship W4313291220A5003799782 @default.
- W4313291220 hasAuthorship W4313291220A5035932097 @default.
- W4313291220 hasAuthorship W4313291220A5040372935 @default.
- W4313291220 hasAuthorship W4313291220A5074686535 @default.
- W4313291220 hasConcept C114614502 @default.
- W4313291220 hasConcept C119857082 @default.
- W4313291220 hasConcept C124101348 @default.
- W4313291220 hasConcept C134306372 @default.
- W4313291220 hasConcept C154945302 @default.
- W4313291220 hasConcept C17212007 @default.
- W4313291220 hasConcept C177148314 @default.
- W4313291220 hasConcept C195975749 @default.
- W4313291220 hasConcept C22019652 @default.
- W4313291220 hasConcept C29470771 @default.
- W4313291220 hasConcept C33923547 @default.
- W4313291220 hasConcept C41008148 @default.
- W4313291220 hasConcept C42812 @default.
- W4313291220 hasConcept C50644808 @default.
- W4313291220 hasConcept C58166 @default.
- W4313291220 hasConcept C73555534 @default.
- W4313291220 hasConceptScore W4313291220C114614502 @default.
- W4313291220 hasConceptScore W4313291220C119857082 @default.
- W4313291220 hasConceptScore W4313291220C124101348 @default.
- W4313291220 hasConceptScore W4313291220C134306372 @default.
- W4313291220 hasConceptScore W4313291220C154945302 @default.
- W4313291220 hasConceptScore W4313291220C17212007 @default.
- W4313291220 hasConceptScore W4313291220C177148314 @default.
- W4313291220 hasConceptScore W4313291220C195975749 @default.
- W4313291220 hasConceptScore W4313291220C22019652 @default.
- W4313291220 hasConceptScore W4313291220C29470771 @default.
- W4313291220 hasConceptScore W4313291220C33923547 @default.
- W4313291220 hasConceptScore W4313291220C41008148 @default.
- W4313291220 hasConceptScore W4313291220C42812 @default.
- W4313291220 hasConceptScore W4313291220C50644808 @default.
- W4313291220 hasConceptScore W4313291220C58166 @default.
- W4313291220 hasConceptScore W4313291220C73555534 @default.
- W4313291220 hasFunder F4320321001 @default.
- W4313291220 hasLocation W43132912201 @default.
- W4313291220 hasLocation W43132912202 @default.
- W4313291220 hasOpenAccess W4313291220 @default.
- W4313291220 hasPrimaryLocation W43132912201 @default.
- W4313291220 hasRelatedWork W1123195735 @default.
- W4313291220 hasRelatedWork W1566771802 @default.
- W4313291220 hasRelatedWork W1991234008 @default.
- W4313291220 hasRelatedWork W1992515347 @default.
- W4313291220 hasRelatedWork W2055089003 @default.
- W4313291220 hasRelatedWork W2182789764 @default.
- W4313291220 hasRelatedWork W2504455232 @default.
- W4313291220 hasRelatedWork W2614500124 @default.
- W4313291220 hasRelatedWork W2946626286 @default.
- W4313291220 hasRelatedWork W3044603601 @default.
- W4313291220 isParatext "false" @default.
- W4313291220 isRetracted "false" @default.
- W4313291220 workType "article" @default.