Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291229> ?p ?o ?g. }
- W4313291229 endingPage "976" @default.
- W4313291229 startingPage "963" @default.
- W4313291229 abstract "Evapotranspiration can be used to estimate the amount of water required by agriculture projects and green spaces, playing a key role in water management policies that combat the hydrological drought, which assumes a structural character in many countries. In this context, this work presents a study on reference evapotranspiration ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> ) estimation models, having as input a limited set of meteorological parameters, namely: temperature, humidity, and wind. Since solar radiation (SR) is an important parameter in the determination of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> , SR estimation models are also developed. These <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> and SR estimation models compare the use of Artificial Neural Networks (ANN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), and hybrid neural network models such as LSTM-ANN, RNN-ANN, and GRU-ANN. Two main approaches were taken for <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> estimation: (i) directly use those algorithms to estimate <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> , and (ii) estimate solar radiation first and then use that estimation together with other meteorological parameters in a method that predicts <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> . For the latter case, two variants were implemented: the use of the estimated solar radiation as (ii.1) a feature of the neural network regressors, and (ii.2) the use of the Penman-Monteith method (a.k.a. FAO-56PM method, adopted by the United Nations Food and Agriculture Organization) to compute <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ET_{o}$ </tex-math></inline-formula> , which has solar radiation as one of the input parameters. Using experimental data collected from a weather station (WS) located in Vale do Lobo (Portugal), the later approach achieved the best result with a coefficient of determination <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$(R^{2})$ </tex-math></inline-formula> of 0.977. The developed model was then applied to data from eleven stations located in Colorado (USA), with very distinct climatic conditions, showing similar results to the ones for which the models were initially designed ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$R^{2}>0.95$ </tex-math></inline-formula> ), proving a good generalization. As a final notice, the reduced-set features were carefully selected so that they are compatible with free online weather forecast services." @default.
- W4313291229 created "2023-01-06" @default.
- W4313291229 creator A5035171392 @default.
- W4313291229 creator A5042296758 @default.
- W4313291229 creator A5065616961 @default.
- W4313291229 creator A5068144816 @default.
- W4313291229 date "2023-01-01" @default.
- W4313291229 modified "2023-09-26" @default.
- W4313291229 title "Hybrid Neural Network Based Models for Evapotranspiration Prediction Over Limited Weather Parameters" @default.
- W4313291229 cites W1487289320 @default.
- W4313291229 cites W1969974566 @default.
- W4313291229 cites W2002115844 @default.
- W4313291229 cites W2016592075 @default.
- W4313291229 cites W2049928226 @default.
- W4313291229 cites W2064675550 @default.
- W4313291229 cites W2129765594 @default.
- W4313291229 cites W2157331557 @default.
- W4313291229 cites W2172396214 @default.
- W4313291229 cites W2342249984 @default.
- W4313291229 cites W2728819519 @default.
- W4313291229 cites W2762603548 @default.
- W4313291229 cites W2766736793 @default.
- W4313291229 cites W2791896807 @default.
- W4313291229 cites W2810886818 @default.
- W4313291229 cites W2811114122 @default.
- W4313291229 cites W2887176132 @default.
- W4313291229 cites W2920819147 @default.
- W4313291229 cites W2921467030 @default.
- W4313291229 cites W2947611747 @default.
- W4313291229 cites W2980653736 @default.
- W4313291229 cites W2980655104 @default.
- W4313291229 cites W2989855530 @default.
- W4313291229 cites W3006821749 @default.
- W4313291229 cites W3034021666 @default.
- W4313291229 cites W3037961787 @default.
- W4313291229 cites W3043392635 @default.
- W4313291229 cites W3099878876 @default.
- W4313291229 cites W3109503774 @default.
- W4313291229 cites W3155909424 @default.
- W4313291229 cites W3173235060 @default.
- W4313291229 cites W3182706339 @default.
- W4313291229 cites W3201042341 @default.
- W4313291229 cites W3214759127 @default.
- W4313291229 cites W3215770360 @default.
- W4313291229 cites W4213208278 @default.
- W4313291229 cites W4285154654 @default.
- W4313291229 doi "https://doi.org/10.1109/access.2022.3233301" @default.
- W4313291229 hasPublicationYear "2023" @default.
- W4313291229 type Work @default.
- W4313291229 citedByCount "1" @default.
- W4313291229 countsByYear W43132912292023 @default.
- W4313291229 crossrefType "journal-article" @default.
- W4313291229 hasAuthorship W4313291229A5035171392 @default.
- W4313291229 hasAuthorship W4313291229A5042296758 @default.
- W4313291229 hasAuthorship W4313291229A5065616961 @default.
- W4313291229 hasAuthorship W4313291229A5068144816 @default.
- W4313291229 hasBestOaLocation W43132912291 @default.
- W4313291229 hasConcept C11413529 @default.
- W4313291229 hasConcept C119857082 @default.
- W4313291229 hasConcept C154945302 @default.
- W4313291229 hasConcept C166957645 @default.
- W4313291229 hasConcept C176783924 @default.
- W4313291229 hasConcept C18903297 @default.
- W4313291229 hasConcept C205649164 @default.
- W4313291229 hasConcept C2779343474 @default.
- W4313291229 hasConcept C33923547 @default.
- W4313291229 hasConcept C41008148 @default.
- W4313291229 hasConcept C45357846 @default.
- W4313291229 hasConcept C50644808 @default.
- W4313291229 hasConcept C86803240 @default.
- W4313291229 hasConcept C94375191 @default.
- W4313291229 hasConceptScore W4313291229C11413529 @default.
- W4313291229 hasConceptScore W4313291229C119857082 @default.
- W4313291229 hasConceptScore W4313291229C154945302 @default.
- W4313291229 hasConceptScore W4313291229C166957645 @default.
- W4313291229 hasConceptScore W4313291229C176783924 @default.
- W4313291229 hasConceptScore W4313291229C18903297 @default.
- W4313291229 hasConceptScore W4313291229C205649164 @default.
- W4313291229 hasConceptScore W4313291229C2779343474 @default.
- W4313291229 hasConceptScore W4313291229C33923547 @default.
- W4313291229 hasConceptScore W4313291229C41008148 @default.
- W4313291229 hasConceptScore W4313291229C45357846 @default.
- W4313291229 hasConceptScore W4313291229C50644808 @default.
- W4313291229 hasConceptScore W4313291229C86803240 @default.
- W4313291229 hasConceptScore W4313291229C94375191 @default.
- W4313291229 hasFunder F4320335322 @default.
- W4313291229 hasLocation W43132912291 @default.
- W4313291229 hasLocation W43132912292 @default.
- W4313291229 hasOpenAccess W4313291229 @default.
- W4313291229 hasPrimaryLocation W43132912291 @default.
- W4313291229 hasRelatedWork W2386387936 @default.
- W4313291229 hasRelatedWork W2961085424 @default.
- W4313291229 hasRelatedWork W3046775127 @default.
- W4313291229 hasRelatedWork W3170094116 @default.
- W4313291229 hasRelatedWork W4205958290 @default.
- W4313291229 hasRelatedWork W4285260836 @default.
- W4313291229 hasRelatedWork W4286629047 @default.
- W4313291229 hasRelatedWork W4306321456 @default.