Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291230> ?p ?o ?g. }
- W4313291230 endingPage "15" @default.
- W4313291230 startingPage "1" @default.
- W4313291230 abstract "This study utilizes L1B level data from reflected global navigation satellite system (GNSS) signals from the Cyclone GNSS (CYGNSS) mission to estimate sea surface significant wave height (SWH). The normalized bistatic radar cross Section (NBRCS), the leading edge slope (LES), the signal-to-noise ratio (SNR), and the delay-Doppler map average (DDMA) are used as the key variables for the SWH retrieval. Eight other parameters, including instrument gain and scatter area, are also utilized as auxiliary variables to enhance the SWH retrieval performance. A variety of multivariable regression models are investigated to clarify the relationship between the SWH and the variables by using the following five methods: stepwise linear regression, Gaussian support vector machine, artificial neural network, sparrow search algorithm–extreme learning machine, and bagging tree (BT). Results show that, among the five regression models developed, the BT model performs the best with the root mean square error (RMSE) of 0.48 m and the correlation coefficient (CC) of 0.82 when testing one million sets of data randomly selected, while the RMSE and CC of BT model are 0.44 m and 0.73 in the 4500 National Data Buoy Center (NDBC) buoy testing dataset. Meanwhile, the BT model also has the best generalization ability, which means that it performs well in practical applications. In addition, the impacts of different input variables, the size of the training dataset, and the sea surface wind speed are also investigated. These findings are anticipated to serve as helpful guides for creating future SWH retrieval algorithms that are more advanced." @default.
- W4313291230 created "2023-01-06" @default.
- W4313291230 creator A5029034128 @default.
- W4313291230 creator A5032913893 @default.
- W4313291230 creator A5068874676 @default.
- W4313291230 creator A5079094554 @default.
- W4313291230 creator A5080131701 @default.
- W4313291230 date "2023-01-01" @default.
- W4313291230 modified "2023-09-27" @default.
- W4313291230 title "Significant Wave Height Retrieval Based on Multivariable Regression Models Developed With CYGNSS Data" @default.
- W4313291230 cites W1975226595 @default.
- W4313291230 cites W1978778560 @default.
- W4313291230 cites W1995937139 @default.
- W4313291230 cites W2028070629 @default.
- W4313291230 cites W2029279877 @default.
- W4313291230 cites W2037326543 @default.
- W4313291230 cites W2055522016 @default.
- W4313291230 cites W2069560926 @default.
- W4313291230 cites W2097757623 @default.
- W4313291230 cites W2104968029 @default.
- W4313291230 cites W2105484143 @default.
- W4313291230 cites W2139212933 @default.
- W4313291230 cites W2140950054 @default.
- W4313291230 cites W2152761983 @default.
- W4313291230 cites W2161548576 @default.
- W4313291230 cites W2329472099 @default.
- W4313291230 cites W2528581612 @default.
- W4313291230 cites W2555194062 @default.
- W4313291230 cites W2625413745 @default.
- W4313291230 cites W2903721734 @default.
- W4313291230 cites W2921801758 @default.
- W4313291230 cites W2995265070 @default.
- W4313291230 cites W2998553334 @default.
- W4313291230 cites W3023788354 @default.
- W4313291230 cites W3037206505 @default.
- W4313291230 cites W3083369567 @default.
- W4313291230 cites W3083620541 @default.
- W4313291230 cites W3101933275 @default.
- W4313291230 cites W3122807153 @default.
- W4313291230 cites W3134299082 @default.
- W4313291230 cites W3141920046 @default.
- W4313291230 cites W3156567400 @default.
- W4313291230 cites W3157231682 @default.
- W4313291230 cites W3189951784 @default.
- W4313291230 cites W3200109667 @default.
- W4313291230 cites W3215124533 @default.
- W4313291230 cites W4211034383 @default.
- W4313291230 cites W4212883601 @default.
- W4313291230 cites W4214687379 @default.
- W4313291230 cites W4286433387 @default.
- W4313291230 cites W4290995043 @default.
- W4313291230 cites W3009265480 @default.
- W4313291230 doi "https://doi.org/10.1109/tgrs.2022.3233102" @default.
- W4313291230 hasPublicationYear "2023" @default.
- W4313291230 type Work @default.
- W4313291230 citedByCount "0" @default.
- W4313291230 crossrefType "journal-article" @default.
- W4313291230 hasAuthorship W4313291230A5029034128 @default.
- W4313291230 hasAuthorship W4313291230A5032913893 @default.
- W4313291230 hasAuthorship W4313291230A5068874676 @default.
- W4313291230 hasAuthorship W4313291230A5079094554 @default.
- W4313291230 hasAuthorship W4313291230A5080131701 @default.
- W4313291230 hasConcept C105795698 @default.
- W4313291230 hasConcept C119857082 @default.
- W4313291230 hasConcept C121332964 @default.
- W4313291230 hasConcept C12267149 @default.
- W4313291230 hasConcept C139945424 @default.
- W4313291230 hasConcept C14279187 @default.
- W4313291230 hasConcept C153294291 @default.
- W4313291230 hasConcept C154945302 @default.
- W4313291230 hasConcept C161067210 @default.
- W4313291230 hasConcept C165082838 @default.
- W4313291230 hasConcept C166957645 @default.
- W4313291230 hasConcept C205649164 @default.
- W4313291230 hasConcept C2779847632 @default.
- W4313291230 hasConcept C33923547 @default.
- W4313291230 hasConcept C41008148 @default.
- W4313291230 hasConcept C48921125 @default.
- W4313291230 hasConcept C50644808 @default.
- W4313291230 hasConcept C60229501 @default.
- W4313291230 hasConcept C62649853 @default.
- W4313291230 hasConcept C76155785 @default.
- W4313291230 hasConcept C85910571 @default.
- W4313291230 hasConcept C97355855 @default.
- W4313291230 hasConceptScore W4313291230C105795698 @default.
- W4313291230 hasConceptScore W4313291230C119857082 @default.
- W4313291230 hasConceptScore W4313291230C121332964 @default.
- W4313291230 hasConceptScore W4313291230C12267149 @default.
- W4313291230 hasConceptScore W4313291230C139945424 @default.
- W4313291230 hasConceptScore W4313291230C14279187 @default.
- W4313291230 hasConceptScore W4313291230C153294291 @default.
- W4313291230 hasConceptScore W4313291230C154945302 @default.
- W4313291230 hasConceptScore W4313291230C161067210 @default.
- W4313291230 hasConceptScore W4313291230C165082838 @default.
- W4313291230 hasConceptScore W4313291230C166957645 @default.
- W4313291230 hasConceptScore W4313291230C205649164 @default.
- W4313291230 hasConceptScore W4313291230C2779847632 @default.
- W4313291230 hasConceptScore W4313291230C33923547 @default.