Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291259> ?p ?o ?g. }
- W4313291259 endingPage "1058" @default.
- W4313291259 startingPage "1055" @default.
- W4313291259 abstract "This letter proposes a path loss prediction method based on a convolutional neural network (CNN) by extracting features, such as terrain obstacles and building distribution. Twenty prediction tasks are carried out based on different configurations of the wave propagation mode, the number and height distribution of buildings, and whether there is a blocking effect, and a good accuracy is achieved. Meanwhile, the prediction time cost of the CNN and that of ray tracing are comprehensively compared, and in general, the CNN has stable and higher computing efficiency. It can be seen that the CNN has greater advantages when dealing with complex environments and multiple propagation mechanisms by processing topographic maps attributed to its better feature extraction and generalization capabilities." @default.
- W4313291259 created "2023-01-06" @default.
- W4313291259 creator A5009420736 @default.
- W4313291259 creator A5023917846 @default.
- W4313291259 creator A5043474409 @default.
- W4313291259 date "2023-05-01" @default.
- W4313291259 modified "2023-10-16" @default.
- W4313291259 title "An Efficient Wireless Propagation Loss Prediction Model Based on 3-D Terrain Features Extracted by Deep Learning" @default.
- W4313291259 cites W1932847118 @default.
- W4313291259 cites W1997954721 @default.
- W4313291259 cites W2113628655 @default.
- W4313291259 cites W2618530766 @default.
- W4313291259 cites W2949208789 @default.
- W4313291259 cites W3013008552 @default.
- W4313291259 cites W3014571735 @default.
- W4313291259 cites W3047388564 @default.
- W4313291259 cites W3094175797 @default.
- W4313291259 cites W3099529523 @default.
- W4313291259 cites W3134303861 @default.
- W4313291259 cites W3155405202 @default.
- W4313291259 cites W3157026743 @default.
- W4313291259 cites W3208682596 @default.
- W4313291259 cites W3211218110 @default.
- W4313291259 cites W4200284624 @default.
- W4313291259 cites W4207035043 @default.
- W4313291259 cites W4210534417 @default.
- W4313291259 doi "https://doi.org/10.1109/lawp.2022.3231961" @default.
- W4313291259 hasPublicationYear "2023" @default.
- W4313291259 type Work @default.
- W4313291259 citedByCount "0" @default.
- W4313291259 crossrefType "journal-article" @default.
- W4313291259 hasAuthorship W4313291259A5009420736 @default.
- W4313291259 hasAuthorship W4313291259A5023917846 @default.
- W4313291259 hasAuthorship W4313291259A5043474409 @default.
- W4313291259 hasConcept C108583219 @default.
- W4313291259 hasConcept C121332964 @default.
- W4313291259 hasConcept C121483023 @default.
- W4313291259 hasConcept C134306372 @default.
- W4313291259 hasConcept C138885662 @default.
- W4313291259 hasConcept C144745244 @default.
- W4313291259 hasConcept C153180895 @default.
- W4313291259 hasConcept C154945302 @default.
- W4313291259 hasConcept C155032097 @default.
- W4313291259 hasConcept C161840515 @default.
- W4313291259 hasConcept C177148314 @default.
- W4313291259 hasConcept C18903297 @default.
- W4313291259 hasConcept C194273485 @default.
- W4313291259 hasConcept C2776401178 @default.
- W4313291259 hasConcept C31258907 @default.
- W4313291259 hasConcept C33923547 @default.
- W4313291259 hasConcept C41008148 @default.
- W4313291259 hasConcept C41895202 @default.
- W4313291259 hasConcept C50644808 @default.
- W4313291259 hasConcept C52622490 @default.
- W4313291259 hasConcept C555944384 @default.
- W4313291259 hasConcept C62520636 @default.
- W4313291259 hasConcept C76155785 @default.
- W4313291259 hasConcept C81363708 @default.
- W4313291259 hasConcept C86803240 @default.
- W4313291259 hasConceptScore W4313291259C108583219 @default.
- W4313291259 hasConceptScore W4313291259C121332964 @default.
- W4313291259 hasConceptScore W4313291259C121483023 @default.
- W4313291259 hasConceptScore W4313291259C134306372 @default.
- W4313291259 hasConceptScore W4313291259C138885662 @default.
- W4313291259 hasConceptScore W4313291259C144745244 @default.
- W4313291259 hasConceptScore W4313291259C153180895 @default.
- W4313291259 hasConceptScore W4313291259C154945302 @default.
- W4313291259 hasConceptScore W4313291259C155032097 @default.
- W4313291259 hasConceptScore W4313291259C161840515 @default.
- W4313291259 hasConceptScore W4313291259C177148314 @default.
- W4313291259 hasConceptScore W4313291259C18903297 @default.
- W4313291259 hasConceptScore W4313291259C194273485 @default.
- W4313291259 hasConceptScore W4313291259C2776401178 @default.
- W4313291259 hasConceptScore W4313291259C31258907 @default.
- W4313291259 hasConceptScore W4313291259C33923547 @default.
- W4313291259 hasConceptScore W4313291259C41008148 @default.
- W4313291259 hasConceptScore W4313291259C41895202 @default.
- W4313291259 hasConceptScore W4313291259C50644808 @default.
- W4313291259 hasConceptScore W4313291259C52622490 @default.
- W4313291259 hasConceptScore W4313291259C555944384 @default.
- W4313291259 hasConceptScore W4313291259C62520636 @default.
- W4313291259 hasConceptScore W4313291259C76155785 @default.
- W4313291259 hasConceptScore W4313291259C81363708 @default.
- W4313291259 hasConceptScore W4313291259C86803240 @default.
- W4313291259 hasIssue "5" @default.
- W4313291259 hasLocation W43132912591 @default.
- W4313291259 hasOpenAccess W4313291259 @default.
- W4313291259 hasPrimaryLocation W43132912591 @default.
- W4313291259 hasRelatedWork W1863534956 @default.
- W4313291259 hasRelatedWork W1966421350 @default.
- W4313291259 hasRelatedWork W1992962589 @default.
- W4313291259 hasRelatedWork W2088845016 @default.
- W4313291259 hasRelatedWork W2128396103 @default.
- W4313291259 hasRelatedWork W2392835431 @default.
- W4313291259 hasRelatedWork W3034965610 @default.
- W4313291259 hasRelatedWork W4239286941 @default.
- W4313291259 hasRelatedWork W4283775212 @default.
- W4313291259 hasRelatedWork W589102260 @default.