Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291284> ?p ?o ?g. }
- W4313291284 endingPage "6638" @default.
- W4313291284 startingPage "6625" @default.
- W4313291284 abstract "In this paper, a novel UAV-aided vehicular edge computing (VEC) network is proposed, where the vehicle and on-board UAV provide multi-access edge computing (MEC) service for the roadside Internet of Things (IoT) devices. In this system, considering the time-varying channel, we derive the lower bound of signal-to-noise ratio (SNR) based on the first-order Gauss-Markov process. Then, with the short-packet transmission, we maximize the total amount of computation by jointly optimizing the communication scheduling, the trajectories of the vehicle and on-board UAV, and the computing resource, subject to the mobility, connection and computation constraints. The formulated optimization problem is a mix-integer non-convex problem. To efficiently solve it, we propose an alternative algorithm based on the Lagrangian dual decomposition and successive convex approximation technique. Extensive simulation results are provided to show the performance gain of the proposed algorithm." @default.
- W4313291284 created "2023-01-06" @default.
- W4313291284 creator A5048869839 @default.
- W4313291284 creator A5057033292 @default.
- W4313291284 creator A5073196579 @default.
- W4313291284 date "2023-05-01" @default.
- W4313291284 modified "2023-09-27" @default.
- W4313291284 title "UAV-Aided Vehicular Short-Packet Communication and Edge Computing System Under Time-Varying Channel" @default.
- W4313291284 cites W2106864314 @default.
- W4313291284 cites W2120686080 @default.
- W4313291284 cites W2615459164 @default.
- W4313291284 cites W2624989916 @default.
- W4313291284 cites W2896051417 @default.
- W4313291284 cites W2904994737 @default.
- W4313291284 cites W2911909845 @default.
- W4313291284 cites W2940845926 @default.
- W4313291284 cites W2941351277 @default.
- W4313291284 cites W2962737505 @default.
- W4313291284 cites W2963857659 @default.
- W4313291284 cites W2964221923 @default.
- W4313291284 cites W2969528832 @default.
- W4313291284 cites W2982480218 @default.
- W4313291284 cites W3017170021 @default.
- W4313291284 cites W3022291517 @default.
- W4313291284 cites W3033821423 @default.
- W4313291284 cites W3054393695 @default.
- W4313291284 cites W3069042888 @default.
- W4313291284 cites W3083299299 @default.
- W4313291284 cites W3088394253 @default.
- W4313291284 cites W3088579369 @default.
- W4313291284 cites W3093645230 @default.
- W4313291284 cites W3098856588 @default.
- W4313291284 cites W3104409542 @default.
- W4313291284 cites W3105649577 @default.
- W4313291284 cites W3112285996 @default.
- W4313291284 cites W3127389192 @default.
- W4313291284 cites W3130337639 @default.
- W4313291284 cites W3133904518 @default.
- W4313291284 cites W3134344446 @default.
- W4313291284 cites W3162996531 @default.
- W4313291284 cites W3167450743 @default.
- W4313291284 cites W3168041106 @default.
- W4313291284 cites W3205430638 @default.
- W4313291284 cites W3211456653 @default.
- W4313291284 cites W3214709934 @default.
- W4313291284 cites W4205681265 @default.
- W4313291284 doi "https://doi.org/10.1109/tvt.2022.3232841" @default.
- W4313291284 hasPublicationYear "2023" @default.
- W4313291284 type Work @default.
- W4313291284 citedByCount "0" @default.
- W4313291284 crossrefType "journal-article" @default.
- W4313291284 hasAuthorship W4313291284A5048869839 @default.
- W4313291284 hasAuthorship W4313291284A5057033292 @default.
- W4313291284 hasAuthorship W4313291284A5073196579 @default.
- W4313291284 hasBestOaLocation W43132912842 @default.
- W4313291284 hasConcept C11413529 @default.
- W4313291284 hasConcept C120314980 @default.
- W4313291284 hasConcept C126255220 @default.
- W4313291284 hasConcept C127162648 @default.
- W4313291284 hasConcept C158379750 @default.
- W4313291284 hasConcept C162307627 @default.
- W4313291284 hasConcept C206729178 @default.
- W4313291284 hasConcept C2776061582 @default.
- W4313291284 hasConcept C2778456923 @default.
- W4313291284 hasConcept C31258907 @default.
- W4313291284 hasConcept C33923547 @default.
- W4313291284 hasConcept C41008148 @default.
- W4313291284 hasConcept C45374587 @default.
- W4313291284 hasConcept C76155785 @default.
- W4313291284 hasConcept C79403827 @default.
- W4313291284 hasConceptScore W4313291284C11413529 @default.
- W4313291284 hasConceptScore W4313291284C120314980 @default.
- W4313291284 hasConceptScore W4313291284C126255220 @default.
- W4313291284 hasConceptScore W4313291284C127162648 @default.
- W4313291284 hasConceptScore W4313291284C158379750 @default.
- W4313291284 hasConceptScore W4313291284C162307627 @default.
- W4313291284 hasConceptScore W4313291284C206729178 @default.
- W4313291284 hasConceptScore W4313291284C2776061582 @default.
- W4313291284 hasConceptScore W4313291284C2778456923 @default.
- W4313291284 hasConceptScore W4313291284C31258907 @default.
- W4313291284 hasConceptScore W4313291284C33923547 @default.
- W4313291284 hasConceptScore W4313291284C41008148 @default.
- W4313291284 hasConceptScore W4313291284C45374587 @default.
- W4313291284 hasConceptScore W4313291284C76155785 @default.
- W4313291284 hasConceptScore W4313291284C79403827 @default.
- W4313291284 hasFunder F4320321001 @default.
- W4313291284 hasIssue "5" @default.
- W4313291284 hasLocation W43132912841 @default.
- W4313291284 hasLocation W43132912842 @default.
- W4313291284 hasLocation W43132912843 @default.
- W4313291284 hasOpenAccess W4313291284 @default.
- W4313291284 hasPrimaryLocation W43132912841 @default.
- W4313291284 hasRelatedWork W2765680238 @default.
- W4313291284 hasRelatedWork W2911780517 @default.
- W4313291284 hasRelatedWork W2947166927 @default.
- W4313291284 hasRelatedWork W2971110943 @default.
- W4313291284 hasRelatedWork W3005476708 @default.
- W4313291284 hasRelatedWork W3133576474 @default.