Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291359> ?p ?o ?g. }
- W4313291359 endingPage "1635" @default.
- W4313291359 startingPage "1623" @default.
- W4313291359 abstract "Community detection plays an important role in network analysis and has attracted considerable interest from researchers. In the past few decades, various community detection algorithms have been developed for single networks. However, in the real world, relationships between nodes are often of multiple natures, such as friendship, kinship and common interests among people in social networks. These relationships can be modeled by a multilayer network. Thus, identifying communities in multilayer networks has become a challenging problem. The existing algorithms for multilayer networks only utilize the topological structure and ignore the prior information, thereby resulting in low accuracy. In this article, by combining the graph regularization with the prior information, we propose a semi-supervised joint symmetric nonnegative matrix factorization(SSJSNMF) algorithm for community detection in multilayer networks. We use graph regularization term to penalize the latent space dissimilarity of some nodes when prior information shows that these nodes belong to same community. Then, by fusing graph regularization into a joint symmetric nonnegative matrix factorization(NMF) model, the proposed model can utilize the topological structure information and prior information simultaneously. Furthermore, we develop effective multiplicative updating rules to solve the proposed model. Finally, numerical experiments demonstrate that SSSNMF outperforms some existing algorithms." @default.
- W4313291359 created "2023-01-06" @default.
- W4313291359 creator A5017599263 @default.
- W4313291359 creator A5019354655 @default.
- W4313291359 creator A5073844947 @default.
- W4313291359 creator A5076384698 @default.
- W4313291359 creator A5088174174 @default.
- W4313291359 date "2023-05-01" @default.
- W4313291359 modified "2023-10-12" @default.
- W4313291359 title "Community Detection in Multilayer Networks Via Semi-Supervised Joint Symmetric Nonnegative Matrix Factorization" @default.
- W4313291359 cites W1504886279 @default.
- W4313291359 cites W1606375300 @default.
- W4313291359 cites W1902027874 @default.
- W4313291359 cites W1966286510 @default.
- W4313291359 cites W1971421925 @default.
- W4313291359 cites W1983897352 @default.
- W4313291359 cites W1997871231 @default.
- W4313291359 cites W2005941514 @default.
- W4313291359 cites W2016477260 @default.
- W4313291359 cites W2019247858 @default.
- W4313291359 cites W2042847482 @default.
- W4313291359 cites W2043545458 @default.
- W4313291359 cites W2047595357 @default.
- W4313291359 cites W2056782561 @default.
- W4313291359 cites W2059861509 @default.
- W4313291359 cites W2070722739 @default.
- W4313291359 cites W2074617510 @default.
- W4313291359 cites W2080161383 @default.
- W4313291359 cites W2087962968 @default.
- W4313291359 cites W2095646393 @default.
- W4313291359 cites W2095711515 @default.
- W4313291359 cites W2099779699 @default.
- W4313291359 cites W2113573459 @default.
- W4313291359 cites W2119571791 @default.
- W4313291359 cites W2125050594 @default.
- W4313291359 cites W2126105956 @default.
- W4313291359 cites W2127048411 @default.
- W4313291359 cites W2131681506 @default.
- W4313291359 cites W2143197507 @default.
- W4313291359 cites W2145725490 @default.
- W4313291359 cites W2147475342 @default.
- W4313291359 cites W2151936673 @default.
- W4313291359 cites W2164727176 @default.
- W4313291359 cites W2168103112 @default.
- W4313291359 cites W2196880011 @default.
- W4313291359 cites W2233410467 @default.
- W4313291359 cites W2288457463 @default.
- W4313291359 cites W2405459681 @default.
- W4313291359 cites W2557489574 @default.
- W4313291359 cites W2584959193 @default.
- W4313291359 cites W2617874010 @default.
- W4313291359 cites W2733274672 @default.
- W4313291359 cites W2769133055 @default.
- W4313291359 cites W2782612985 @default.
- W4313291359 cites W2782630728 @default.
- W4313291359 cites W2802815569 @default.
- W4313291359 cites W2805847860 @default.
- W4313291359 cites W2905284068 @default.
- W4313291359 cites W2913163997 @default.
- W4313291359 cites W2940896719 @default.
- W4313291359 cites W2947866051 @default.
- W4313291359 cites W2963013895 @default.
- W4313291359 cites W2964261708 @default.
- W4313291359 cites W2985207252 @default.
- W4313291359 cites W3037826211 @default.
- W4313291359 cites W3099209941 @default.
- W4313291359 cites W3102201777 @default.
- W4313291359 cites W3126033509 @default.
- W4313291359 cites W3185161717 @default.
- W4313291359 cites W3197190199 @default.
- W4313291359 cites W4213009331 @default.
- W4313291359 cites W788502760 @default.
- W4313291359 doi "https://doi.org/10.1109/tnse.2022.3231593" @default.
- W4313291359 hasPublicationYear "2023" @default.
- W4313291359 type Work @default.
- W4313291359 citedByCount "0" @default.
- W4313291359 crossrefType "journal-article" @default.
- W4313291359 hasAuthorship W4313291359A5017599263 @default.
- W4313291359 hasAuthorship W4313291359A5019354655 @default.
- W4313291359 hasAuthorship W4313291359A5073844947 @default.
- W4313291359 hasAuthorship W4313291359A5076384698 @default.
- W4313291359 hasAuthorship W4313291359A5088174174 @default.
- W4313291359 hasConcept C11413529 @default.
- W4313291359 hasConcept C114614502 @default.
- W4313291359 hasConcept C121332964 @default.
- W4313291359 hasConcept C132525143 @default.
- W4313291359 hasConcept C133079900 @default.
- W4313291359 hasConcept C134306372 @default.
- W4313291359 hasConcept C152671427 @default.
- W4313291359 hasConcept C154945302 @default.
- W4313291359 hasConcept C158693339 @default.
- W4313291359 hasConcept C187834632 @default.
- W4313291359 hasConcept C2776135515 @default.
- W4313291359 hasConcept C33923547 @default.
- W4313291359 hasConcept C41008148 @default.
- W4313291359 hasConcept C42355184 @default.
- W4313291359 hasConcept C42747912 @default.
- W4313291359 hasConcept C62520636 @default.