Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291370> ?p ?o ?g. }
- W4313291370 endingPage "25" @default.
- W4313291370 startingPage "16" @default.
- W4313291370 abstract "Early detection of Alzheimer's disease (AD) is vital for adequate control. Machine learning techniques have gained much attraction due to their efficiency in predicting AD using cognitive tests. Ensemble machine learning models are helpful in improving the robustness of the learning system via combining multiple machine learning models. This article proposes a novel ensemble machine learning technique for the early detection of AD. First, a novel feature selection technique referred to as Neighborhood Component Analysis and Correlation-based Filtration (NCA-F) is proposed to select the vital cognitive features from a given dataset. Second, various machine learning classifiers were trained using the proposed NCA-F method. The top classifiers were selected for voting based on the performance results. The voting is performed using an adaptive weight matrix process. The output label of a model is multiplied by the F1 score and represented as weight. The results revealed an accuracy of 93.92% when using adaptive voting, which is better than the accuracy of 90.53% observed when using the traditional artificial neural network method. The proposed technique improved the accuracy of detecting AD at an early stage. Furthermore, the results against a recent study using same features also revealed an improvement of 12.12% in accuracy." @default.
- W4313291370 created "2023-01-06" @default.
- W4313291370 creator A5039211759 @default.
- W4313291370 creator A5073452486 @default.
- W4313291370 creator A5086070621 @default.
- W4313291370 date "2023-03-01" @default.
- W4313291370 modified "2023-09-27" @default.
- W4313291370 title "Early Detection of Alzheimer's Disease Using Cognitive Features: A Voting-Based Ensemble Machine Learning Approach" @default.
- W4313291370 cites W1827530491 @default.
- W4313291370 cites W1990729297 @default.
- W4313291370 cites W1995583003 @default.
- W4313291370 cites W2001477615 @default.
- W4313291370 cites W2004918970 @default.
- W4313291370 cites W2009849318 @default.
- W4313291370 cites W2092493898 @default.
- W4313291370 cites W2098154993 @default.
- W4313291370 cites W2115098571 @default.
- W4313291370 cites W2122472025 @default.
- W4313291370 cites W2126149232 @default.
- W4313291370 cites W2142964353 @default.
- W4313291370 cites W2150884987 @default.
- W4313291370 cites W2341343123 @default.
- W4313291370 cites W2498672755 @default.
- W4313291370 cites W2560584411 @default.
- W4313291370 cites W2583500168 @default.
- W4313291370 cites W2606981059 @default.
- W4313291370 cites W2607838029 @default.
- W4313291370 cites W2724131311 @default.
- W4313291370 cites W2775730689 @default.
- W4313291370 cites W2896817048 @default.
- W4313291370 cites W2899213164 @default.
- W4313291370 cites W2899335103 @default.
- W4313291370 cites W2905442369 @default.
- W4313291370 cites W2942882625 @default.
- W4313291370 cites W2949980035 @default.
- W4313291370 cites W2959398397 @default.
- W4313291370 cites W2977087659 @default.
- W4313291370 cites W2989646516 @default.
- W4313291370 cites W2993648038 @default.
- W4313291370 cites W3009753279 @default.
- W4313291370 cites W3014251530 @default.
- W4313291370 cites W3014315553 @default.
- W4313291370 cites W3045153201 @default.
- W4313291370 cites W3113069800 @default.
- W4313291370 cites W2106711545 @default.
- W4313291370 doi "https://doi.org/10.1109/emr.2022.3230820" @default.
- W4313291370 hasPublicationYear "2023" @default.
- W4313291370 type Work @default.
- W4313291370 citedByCount "0" @default.
- W4313291370 crossrefType "journal-article" @default.
- W4313291370 hasAuthorship W4313291370A5039211759 @default.
- W4313291370 hasAuthorship W4313291370A5073452486 @default.
- W4313291370 hasAuthorship W4313291370A5086070621 @default.
- W4313291370 hasConcept C104317684 @default.
- W4313291370 hasConcept C119857082 @default.
- W4313291370 hasConcept C148483581 @default.
- W4313291370 hasConcept C153180895 @default.
- W4313291370 hasConcept C154945302 @default.
- W4313291370 hasConcept C17744445 @default.
- W4313291370 hasConcept C185592680 @default.
- W4313291370 hasConcept C199539241 @default.
- W4313291370 hasConcept C41008148 @default.
- W4313291370 hasConcept C45942800 @default.
- W4313291370 hasConcept C50644808 @default.
- W4313291370 hasConcept C520049643 @default.
- W4313291370 hasConcept C55493867 @default.
- W4313291370 hasConcept C63479239 @default.
- W4313291370 hasConcept C94625758 @default.
- W4313291370 hasConceptScore W4313291370C104317684 @default.
- W4313291370 hasConceptScore W4313291370C119857082 @default.
- W4313291370 hasConceptScore W4313291370C148483581 @default.
- W4313291370 hasConceptScore W4313291370C153180895 @default.
- W4313291370 hasConceptScore W4313291370C154945302 @default.
- W4313291370 hasConceptScore W4313291370C17744445 @default.
- W4313291370 hasConceptScore W4313291370C185592680 @default.
- W4313291370 hasConceptScore W4313291370C199539241 @default.
- W4313291370 hasConceptScore W4313291370C41008148 @default.
- W4313291370 hasConceptScore W4313291370C45942800 @default.
- W4313291370 hasConceptScore W4313291370C50644808 @default.
- W4313291370 hasConceptScore W4313291370C520049643 @default.
- W4313291370 hasConceptScore W4313291370C55493867 @default.
- W4313291370 hasConceptScore W4313291370C63479239 @default.
- W4313291370 hasConceptScore W4313291370C94625758 @default.
- W4313291370 hasIssue "1" @default.
- W4313291370 hasLocation W43132913701 @default.
- W4313291370 hasOpenAccess W4313291370 @default.
- W4313291370 hasPrimaryLocation W43132913701 @default.
- W4313291370 hasRelatedWork W2973799232 @default.
- W4313291370 hasRelatedWork W3016925281 @default.
- W4313291370 hasRelatedWork W3109447255 @default.
- W4313291370 hasRelatedWork W3174196512 @default.
- W4313291370 hasRelatedWork W3210877509 @default.
- W4313291370 hasRelatedWork W4212852473 @default.
- W4313291370 hasRelatedWork W4225360065 @default.
- W4313291370 hasRelatedWork W4285046548 @default.
- W4313291370 hasRelatedWork W4285741730 @default.
- W4313291370 hasRelatedWork W4307883119 @default.
- W4313291370 hasVolume "51" @default.