Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291432> ?p ?o ?g. }
- W4313291432 endingPage "6610" @default.
- W4313291432 startingPage "6599" @default.
- W4313291432 abstract "A group of robots can be assigned with different roles to collaboratively conduct interdependent tasks. The robots form a multi-robot system (MRS), where one robot's decision or action relies on the others'. This paper addresses the sequential decision problem of user association and resource allocation in a mobile edge computing (MEC)-enabled, wirelessly-connected MRS to maximize the time-averaged completion rate of interdependent computing tasks. The problem is challenging due to the partial observability of the network environment, and the delicate delay requirements of interdependent computing tasks. A new decentralized partially observable Markov decision process (Dec-POMDP) problem is reformulated, where edge servers act as intelligent agents and can make decentralized decisions about user association and resource management with their local information of the network state. By leveraging the multi-agent deep deterministic policy gradient (MADDPG) theory, a new cooperative multi-agent deep reinforcement learning (MADRL) model is developed to enable interdependent computing. Simulations show the merits of our approach in terms of task completion rate compared to existing techniques." @default.
- W4313291432 created "2023-01-06" @default.
- W4313291432 creator A5018587643 @default.
- W4313291432 creator A5021115042 @default.
- W4313291432 creator A5021527965 @default.
- W4313291432 creator A5055151897 @default.
- W4313291432 creator A5075198788 @default.
- W4313291432 creator A5079432150 @default.
- W4313291432 date "2023-05-01" @default.
- W4313291432 modified "2023-10-16" @default.
- W4313291432 title "Multi-Agent Deep Reinforcement Learning-Based Interdependent Computing for Mobile Edge Computing-Assisted Robot Teams" @default.
- W4313291432 cites W2035319610 @default.
- W4313291432 cites W2072776850 @default.
- W4313291432 cites W2584792247 @default.
- W4313291432 cites W2609618253 @default.
- W4313291432 cites W2761545465 @default.
- W4313291432 cites W2766196346 @default.
- W4313291432 cites W2785339424 @default.
- W4313291432 cites W2793431418 @default.
- W4313291432 cites W2793991899 @default.
- W4313291432 cites W2885332447 @default.
- W4313291432 cites W2891123429 @default.
- W4313291432 cites W2895939936 @default.
- W4313291432 cites W2914261331 @default.
- W4313291432 cites W2920054549 @default.
- W4313291432 cites W2921163933 @default.
- W4313291432 cites W2963376050 @default.
- W4313291432 cites W2964335916 @default.
- W4313291432 cites W2966021969 @default.
- W4313291432 cites W2968424451 @default.
- W4313291432 cites W2980191379 @default.
- W4313291432 cites W2996741864 @default.
- W4313291432 cites W2999380984 @default.
- W4313291432 cites W3000652959 @default.
- W4313291432 cites W3003541603 @default.
- W4313291432 cites W3015366655 @default.
- W4313291432 cites W3015372990 @default.
- W4313291432 cites W3015613093 @default.
- W4313291432 cites W3016621379 @default.
- W4313291432 cites W3017275226 @default.
- W4313291432 cites W3023720662 @default.
- W4313291432 cites W3048217314 @default.
- W4313291432 cites W3084212983 @default.
- W4313291432 cites W3103262232 @default.
- W4313291432 cites W3105649577 @default.
- W4313291432 cites W3107130550 @default.
- W4313291432 cites W3115020659 @default.
- W4313291432 cites W3195963568 @default.
- W4313291432 cites W4238484605 @default.
- W4313291432 cites W4308313203 @default.
- W4313291432 doi "https://doi.org/10.1109/tvt.2022.3232806" @default.
- W4313291432 hasPublicationYear "2023" @default.
- W4313291432 type Work @default.
- W4313291432 citedByCount "3" @default.
- W4313291432 countsByYear W43132914322023 @default.
- W4313291432 crossrefType "journal-article" @default.
- W4313291432 hasAuthorship W4313291432A5018587643 @default.
- W4313291432 hasAuthorship W4313291432A5021115042 @default.
- W4313291432 hasAuthorship W4313291432A5021527965 @default.
- W4313291432 hasAuthorship W4313291432A5055151897 @default.
- W4313291432 hasAuthorship W4313291432A5075198788 @default.
- W4313291432 hasAuthorship W4313291432A5079432150 @default.
- W4313291432 hasConcept C105795698 @default.
- W4313291432 hasConcept C106189395 @default.
- W4313291432 hasConcept C119857082 @default.
- W4313291432 hasConcept C120314980 @default.
- W4313291432 hasConcept C154945302 @default.
- W4313291432 hasConcept C159886148 @default.
- W4313291432 hasConcept C162307627 @default.
- W4313291432 hasConcept C163836022 @default.
- W4313291432 hasConcept C17098449 @default.
- W4313291432 hasConcept C17744445 @default.
- W4313291432 hasConcept C185874996 @default.
- W4313291432 hasConcept C199539241 @default.
- W4313291432 hasConcept C19966478 @default.
- W4313291432 hasConcept C2776061582 @default.
- W4313291432 hasConcept C2778456923 @default.
- W4313291432 hasConcept C28826006 @default.
- W4313291432 hasConcept C31258907 @default.
- W4313291432 hasConcept C33923547 @default.
- W4313291432 hasConcept C36299963 @default.
- W4313291432 hasConcept C41008148 @default.
- W4313291432 hasConcept C41550386 @default.
- W4313291432 hasConcept C90509273 @default.
- W4313291432 hasConcept C93996380 @default.
- W4313291432 hasConcept C97541855 @default.
- W4313291432 hasConcept C98763669 @default.
- W4313291432 hasConceptScore W4313291432C105795698 @default.
- W4313291432 hasConceptScore W4313291432C106189395 @default.
- W4313291432 hasConceptScore W4313291432C119857082 @default.
- W4313291432 hasConceptScore W4313291432C120314980 @default.
- W4313291432 hasConceptScore W4313291432C154945302 @default.
- W4313291432 hasConceptScore W4313291432C159886148 @default.
- W4313291432 hasConceptScore W4313291432C162307627 @default.
- W4313291432 hasConceptScore W4313291432C163836022 @default.
- W4313291432 hasConceptScore W4313291432C17098449 @default.
- W4313291432 hasConceptScore W4313291432C17744445 @default.
- W4313291432 hasConceptScore W4313291432C185874996 @default.