Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291741> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313291741 endingPage "102997" @default.
- W4313291741 startingPage "102997" @default.
- W4313291741 abstract "Accurate airport arrival flow prediction is a precondition for intelligent air traffic flow management. However, most existing studies focus on the dynamic traffic flow in a single-airport scenario, which usually ignores the spatial interactions among airports. Modelling network-wide spatial dependencies among airports is difficult because it requires models to consider multiple underlying factors jointly. We propose a multi-view fusion approach to automatically learn an adjacency matrix from flight duration and flight schedule factors. The learned adjacency matrix is then fed into a specially designed graph convolutional block, which governs the message passing process among airports. Finally, the graph convolutional block with the learned adjacency matrix is embedded into the gated recurrent units to capture temporal dependencies. Experimental results on a real-world dataset for the multistep prediction task show the effectiveness and efficacy of the proposed model. In addition, visualisation and analysis of the learned adjacency matrix verify that the proposed multi-view fusion approach is capable of learning informative spatial interaction patterns." @default.
- W4313291741 created "2023-01-06" @default.
- W4313291741 creator A5009976905 @default.
- W4313291741 creator A5033006879 @default.
- W4313291741 creator A5057118376 @default.
- W4313291741 creator A5066617875 @default.
- W4313291741 date "2023-02-01" @default.
- W4313291741 modified "2023-10-16" @default.
- W4313291741 title "A multi-view attention-based spatial–temporal network for airport arrival flow prediction" @default.
- W4313291741 cites W1975006710 @default.
- W4313291741 cites W1988911762 @default.
- W4313291741 cites W2032549372 @default.
- W4313291741 cites W2048372914 @default.
- W4313291741 cites W2109255472 @default.
- W4313291741 cites W2890485603 @default.
- W4313291741 cites W2901504064 @default.
- W4313291741 cites W3041552048 @default.
- W4313291741 cites W3103922739 @default.
- W4313291741 cites W3111654301 @default.
- W4313291741 cites W3117615028 @default.
- W4313291741 cites W4200173733 @default.
- W4313291741 cites W4293565051 @default.
- W4313291741 doi "https://doi.org/10.1016/j.tre.2022.102997" @default.
- W4313291741 hasPublicationYear "2023" @default.
- W4313291741 type Work @default.
- W4313291741 citedByCount "2" @default.
- W4313291741 countsByYear W43132917412023 @default.
- W4313291741 crossrefType "journal-article" @default.
- W4313291741 hasAuthorship W4313291741A5009976905 @default.
- W4313291741 hasAuthorship W4313291741A5033006879 @default.
- W4313291741 hasAuthorship W4313291741A5057118376 @default.
- W4313291741 hasAuthorship W4313291741A5066617875 @default.
- W4313291741 hasConcept C110484373 @default.
- W4313291741 hasConcept C111919701 @default.
- W4313291741 hasConcept C11413529 @default.
- W4313291741 hasConcept C119857082 @default.
- W4313291741 hasConcept C120665830 @default.
- W4313291741 hasConcept C121332964 @default.
- W4313291741 hasConcept C124101348 @default.
- W4313291741 hasConcept C132525143 @default.
- W4313291741 hasConcept C154945302 @default.
- W4313291741 hasConcept C180356752 @default.
- W4313291741 hasConcept C192209626 @default.
- W4313291741 hasConcept C2524010 @default.
- W4313291741 hasConcept C2777210771 @default.
- W4313291741 hasConcept C33923547 @default.
- W4313291741 hasConcept C41008148 @default.
- W4313291741 hasConcept C80444323 @default.
- W4313291741 hasConcept C98045186 @default.
- W4313291741 hasConceptScore W4313291741C110484373 @default.
- W4313291741 hasConceptScore W4313291741C111919701 @default.
- W4313291741 hasConceptScore W4313291741C11413529 @default.
- W4313291741 hasConceptScore W4313291741C119857082 @default.
- W4313291741 hasConceptScore W4313291741C120665830 @default.
- W4313291741 hasConceptScore W4313291741C121332964 @default.
- W4313291741 hasConceptScore W4313291741C124101348 @default.
- W4313291741 hasConceptScore W4313291741C132525143 @default.
- W4313291741 hasConceptScore W4313291741C154945302 @default.
- W4313291741 hasConceptScore W4313291741C180356752 @default.
- W4313291741 hasConceptScore W4313291741C192209626 @default.
- W4313291741 hasConceptScore W4313291741C2524010 @default.
- W4313291741 hasConceptScore W4313291741C2777210771 @default.
- W4313291741 hasConceptScore W4313291741C33923547 @default.
- W4313291741 hasConceptScore W4313291741C41008148 @default.
- W4313291741 hasConceptScore W4313291741C80444323 @default.
- W4313291741 hasConceptScore W4313291741C98045186 @default.
- W4313291741 hasLocation W43132917411 @default.
- W4313291741 hasOpenAccess W4313291741 @default.
- W4313291741 hasPrimaryLocation W43132917411 @default.
- W4313291741 hasRelatedWork W1518585478 @default.
- W4313291741 hasRelatedWork W2359077928 @default.
- W4313291741 hasRelatedWork W2374780422 @default.
- W4313291741 hasRelatedWork W2898295633 @default.
- W4313291741 hasRelatedWork W3023570621 @default.
- W4313291741 hasRelatedWork W3164306936 @default.
- W4313291741 hasRelatedWork W3194558310 @default.
- W4313291741 hasRelatedWork W4226162056 @default.
- W4313291741 hasRelatedWork W4287178724 @default.
- W4313291741 hasRelatedWork W4362510916 @default.
- W4313291741 hasVolume "170" @default.
- W4313291741 isParatext "false" @default.
- W4313291741 isRetracted "false" @default.
- W4313291741 workType "article" @default.