Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313291818> ?p ?o ?g. }
- W4313291818 abstract "ABSTRACT Image-based machine learning methods are quickly becoming among the most widely-used forms of data analysis across science, technology, and engineering. These methods are powerful because they can rapidly and automatically extract rich contextual and spatial information from images, a process that has historically required a large amount of manual labor. The potential of image-based machine learning methods to change how researchers study the ocean has been demonstrated through a diverse range of recent applications. However, despite their promise, machine learning tools are still under-exploited in many domains including species and environmental monitoring, biodiversity surveys, fisheries abundance and size estimation, rare event and species detection, the study of wild animal behavior, and citizen science. Our objective in this article is to provide an approachable, application-oriented guide to help researchers apply image-based machine learning methods effectively to their own research problems. Using a case study, we describe how to prepare data, train and deploy models, and avoid common pitfalls that can cause models to underperform. Importantly, we discuss how to diagnose problems that can cause poor model performance on new imagery to build robust tools that can vastly accelerate data acquisition in the marine realm. Code to perform our analyses is provided at https://github.com/heinsense2/AIO_CaseStudy" @default.
- W4313291818 created "2023-01-06" @default.
- W4313291818 creator A5004605404 @default.
- W4313291818 creator A5004803858 @default.
- W4313291818 creator A5006547973 @default.
- W4313291818 creator A5015607379 @default.
- W4313291818 creator A5021011900 @default.
- W4313291818 creator A5022678440 @default.
- W4313291818 creator A5030270211 @default.
- W4313291818 creator A5033359196 @default.
- W4313291818 creator A5033532693 @default.
- W4313291818 creator A5036614949 @default.
- W4313291818 creator A5044959364 @default.
- W4313291818 creator A5045147743 @default.
- W4313291818 creator A5059390252 @default.
- W4313291818 creator A5071963891 @default.
- W4313291818 creator A5076782227 @default.
- W4313291818 creator A5078653206 @default.
- W4313291818 creator A5083381174 @default.
- W4313291818 date "2022-12-27" @default.
- W4313291818 modified "2023-09-30" @default.
- W4313291818 title "Demystifying image-based machine learning: A practical guide to automated analysis of field imagery using modern machine learning tools" @default.
- W4313291818 cites W1519478720 @default.
- W4313291818 cites W1588282782 @default.
- W4313291818 cites W1861492603 @default.
- W4313291818 cites W1967626905 @default.
- W4313291818 cites W2005912592 @default.
- W4313291818 cites W2028576939 @default.
- W4313291818 cites W2069930796 @default.
- W4313291818 cites W2101203599 @default.
- W4313291818 cites W2117539524 @default.
- W4313291818 cites W2126326837 @default.
- W4313291818 cites W2141531011 @default.
- W4313291818 cites W2163922914 @default.
- W4313291818 cites W2186155590 @default.
- W4313291818 cites W2313538785 @default.
- W4313291818 cites W2423811253 @default.
- W4313291818 cites W2522256182 @default.
- W4313291818 cites W2523983814 @default.
- W4313291818 cites W2597876337 @default.
- W4313291818 cites W2612719531 @default.
- W4313291818 cites W2769210209 @default.
- W4313291818 cites W2792991153 @default.
- W4313291818 cites W2799332695 @default.
- W4313291818 cites W2883386984 @default.
- W4313291818 cites W2886193878 @default.
- W4313291818 cites W2886910176 @default.
- W4313291818 cites W2888728157 @default.
- W4313291818 cites W2891182582 @default.
- W4313291818 cites W2897654901 @default.
- W4313291818 cites W2899806120 @default.
- W4313291818 cites W2901016518 @default.
- W4313291818 cites W2919115771 @default.
- W4313291818 cites W2920741983 @default.
- W4313291818 cites W2937343562 @default.
- W4313291818 cites W2941352015 @default.
- W4313291818 cites W2941857669 @default.
- W4313291818 cites W2942820598 @default.
- W4313291818 cites W2955325220 @default.
- W4313291818 cites W2963556638 @default.
- W4313291818 cites W2964309882 @default.
- W4313291818 cites W2981175105 @default.
- W4313291818 cites W2982088505 @default.
- W4313291818 cites W2990500698 @default.
- W4313291818 cites W2990943996 @default.
- W4313291818 cites W3001975036 @default.
- W4313291818 cites W3003983420 @default.
- W4313291818 cites W3009074285 @default.
- W4313291818 cites W3014286955 @default.
- W4313291818 cites W3014530100 @default.
- W4313291818 cites W3081605501 @default.
- W4313291818 cites W3092712724 @default.
- W4313291818 cites W3093743393 @default.
- W4313291818 cites W3098886805 @default.
- W4313291818 cites W3099319035 @default.
- W4313291818 cites W3106753828 @default.
- W4313291818 cites W3120613243 @default.
- W4313291818 cites W3129142304 @default.
- W4313291818 cites W3130629040 @default.
- W4313291818 cites W3134739465 @default.
- W4313291818 cites W3137631935 @default.
- W4313291818 cites W3160672850 @default.
- W4313291818 cites W3176152216 @default.
- W4313291818 cites W3197522065 @default.
- W4313291818 cites W3203015511 @default.
- W4313291818 cites W3208990465 @default.
- W4313291818 cites W3209059101 @default.
- W4313291818 cites W4205475721 @default.
- W4313291818 cites W4205814812 @default.
- W4313291818 cites W4206592042 @default.
- W4313291818 cites W4206850212 @default.
- W4313291818 cites W4220657476 @default.
- W4313291818 cites W4230612345 @default.
- W4313291818 cites W4285730868 @default.
- W4313291818 cites W4293018791 @default.
- W4313291818 cites W4296841405 @default.
- W4313291818 cites W4297327842 @default.
- W4313291818 doi "https://doi.org/10.1101/2022.12.24.521836" @default.
- W4313291818 hasPublicationYear "2022" @default.
- W4313291818 type Work @default.