Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313294295> ?p ?o ?g. }
- W4313294295 endingPage "41" @default.
- W4313294295 startingPage "1" @default.
- W4313294295 abstract "In this two-part study, we develop a general theory of the so-called exact augmented Lagrangians for constrained optimization problems in Hilbert spaces. In contrast to traditional nonsmooth exact penalty functions, these augmented Lagrangians are continuously differentiable for smooth problems and do not suffer from the Maratos effect, which makes them especially appealing for applications in numerical optimization. Our aim is to present a detailed study of various theoretical properties of exact augmented Lagrangians and discuss several applications of these functions to constrained variational problems, problems with PDE constraints, and optimal control problems. The first paper is devoted to a theoretical analysis of an exact augmented Lagrangian for optimization problems in Hilbert spaces. We obtain several useful estimates of this augmented Lagrangian and its gradient, and present several types of sufficient conditions for KKT-points of a constrained problem corresponding to locally/globally optimal solutions to be local/global minimisers of the exact augmented Lagrangian." @default.
- W4313294295 created "2023-01-06" @default.
- W4313294295 creator A5000808861 @default.
- W4313294295 date "2022-12-16" @default.
- W4313294295 modified "2023-09-26" @default.
- W4313294295 title "Exact augmented Lagrangians for constrained optimization problems in Hilbert spaces I: theory" @default.
- W4313294295 cites W147998453 @default.
- W4313294295 cites W1537475971 @default.
- W4313294295 cites W1720078559 @default.
- W4313294295 cites W1964658432 @default.
- W4313294295 cites W1976086748 @default.
- W4313294295 cites W1979968848 @default.
- W4313294295 cites W1984848663 @default.
- W4313294295 cites W1984929374 @default.
- W4313294295 cites W1986490170 @default.
- W4313294295 cites W2002561307 @default.
- W4313294295 cites W2003140178 @default.
- W4313294295 cites W2010672183 @default.
- W4313294295 cites W2011419097 @default.
- W4313294295 cites W2012637151 @default.
- W4313294295 cites W2017292650 @default.
- W4313294295 cites W2019283948 @default.
- W4313294295 cites W2028527358 @default.
- W4313294295 cites W2028674493 @default.
- W4313294295 cites W2029701500 @default.
- W4313294295 cites W2032266076 @default.
- W4313294295 cites W2032752826 @default.
- W4313294295 cites W2037091587 @default.
- W4313294295 cites W2046159525 @default.
- W4313294295 cites W2060251403 @default.
- W4313294295 cites W2071508510 @default.
- W4313294295 cites W2075234603 @default.
- W4313294295 cites W2078848567 @default.
- W4313294295 cites W2094814001 @default.
- W4313294295 cites W2111004976 @default.
- W4313294295 cites W2121205193 @default.
- W4313294295 cites W2174004662 @default.
- W4313294295 cites W2290212852 @default.
- W4313294295 cites W2918200358 @default.
- W4313294295 cites W2974088518 @default.
- W4313294295 cites W2980201261 @default.
- W4313294295 cites W3098726780 @default.
- W4313294295 cites W3101145685 @default.
- W4313294295 cites W3106258624 @default.
- W4313294295 cites W36913435 @default.
- W4313294295 cites W37633699 @default.
- W4313294295 cites W4211177721 @default.
- W4313294295 cites W4246616525 @default.
- W4313294295 cites W4252287892 @default.
- W4313294295 cites W583107990 @default.
- W4313294295 cites W646582900 @default.
- W4313294295 doi "https://doi.org/10.1080/02331934.2022.2157678" @default.
- W4313294295 hasPublicationYear "2022" @default.
- W4313294295 type Work @default.
- W4313294295 citedByCount "0" @default.
- W4313294295 crossrefType "journal-article" @default.
- W4313294295 hasAuthorship W4313294295A5000808861 @default.
- W4313294295 hasBestOaLocation W43132942952 @default.
- W4313294295 hasConcept C126255220 @default.
- W4313294295 hasConcept C134306372 @default.
- W4313294295 hasConcept C137836250 @default.
- W4313294295 hasConcept C150452318 @default.
- W4313294295 hasConcept C202615002 @default.
- W4313294295 hasConcept C28826006 @default.
- W4313294295 hasConcept C33923547 @default.
- W4313294295 hasConcept C50454189 @default.
- W4313294295 hasConcept C53469067 @default.
- W4313294295 hasConcept C55660270 @default.
- W4313294295 hasConcept C6180225 @default.
- W4313294295 hasConcept C62799726 @default.
- W4313294295 hasConcept C91575142 @default.
- W4313294295 hasConceptScore W4313294295C126255220 @default.
- W4313294295 hasConceptScore W4313294295C134306372 @default.
- W4313294295 hasConceptScore W4313294295C137836250 @default.
- W4313294295 hasConceptScore W4313294295C150452318 @default.
- W4313294295 hasConceptScore W4313294295C202615002 @default.
- W4313294295 hasConceptScore W4313294295C28826006 @default.
- W4313294295 hasConceptScore W4313294295C33923547 @default.
- W4313294295 hasConceptScore W4313294295C50454189 @default.
- W4313294295 hasConceptScore W4313294295C53469067 @default.
- W4313294295 hasConceptScore W4313294295C55660270 @default.
- W4313294295 hasConceptScore W4313294295C6180225 @default.
- W4313294295 hasConceptScore W4313294295C62799726 @default.
- W4313294295 hasConceptScore W4313294295C91575142 @default.
- W4313294295 hasFunder F4320324099 @default.
- W4313294295 hasLocation W43132942951 @default.
- W4313294295 hasLocation W43132942952 @default.
- W4313294295 hasOpenAccess W4313294295 @default.
- W4313294295 hasPrimaryLocation W43132942951 @default.
- W4313294295 hasRelatedWork W1533587163 @default.
- W4313294295 hasRelatedWork W2135162895 @default.
- W4313294295 hasRelatedWork W2238101614 @default.
- W4313294295 hasRelatedWork W2474851184 @default.
- W4313294295 hasRelatedWork W2615021531 @default.
- W4313294295 hasRelatedWork W2989013112 @default.
- W4313294295 hasRelatedWork W3123416417 @default.
- W4313294295 hasRelatedWork W4221148200 @default.
- W4313294295 hasRelatedWork W4313189992 @default.